Welcome to mirror list, hosted at ThFree Co, Russian Federation.

jet.h « ceres « include « ceres « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: fba1e2ab6e0541c84b77effde2124f69665edc03 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2022 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
//   this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
//   this list of conditions and the following disclaimer in the documentation
//   and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
//   used to endorse or promote products derived from this software without
//   specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: keir@google.com (Keir Mierle)
//
// A simple implementation of N-dimensional dual numbers, for automatically
// computing exact derivatives of functions.
//
// While a complete treatment of the mechanics of automatic differentiation is
// beyond the scope of this header (see
// http://en.wikipedia.org/wiki/Automatic_differentiation for details), the
// basic idea is to extend normal arithmetic with an extra element, "e," often
// denoted with the greek symbol epsilon, such that e != 0 but e^2 = 0. Dual
// numbers are extensions of the real numbers analogous to complex numbers:
// whereas complex numbers augment the reals by introducing an imaginary unit i
// such that i^2 = -1, dual numbers introduce an "infinitesimal" unit e such
// that e^2 = 0. Dual numbers have two components: the "real" component and the
// "infinitesimal" component, generally written as x + y*e. Surprisingly, this
// leads to a convenient method for computing exact derivatives without needing
// to manipulate complicated symbolic expressions.
//
// For example, consider the function
//
//   f(x) = x^2 ,
//
// evaluated at 10. Using normal arithmetic, f(10) = 100, and df/dx(10) = 20.
// Next, argument 10 with an infinitesimal to get:
//
//   f(10 + e) = (10 + e)^2
//             = 100 + 2 * 10 * e + e^2
//             = 100 + 20 * e       -+-
//                     --            |
//                     |             +--- This is zero, since e^2 = 0
//                     |
//                     +----------------- This is df/dx!
//
// Note that the derivative of f with respect to x is simply the infinitesimal
// component of the value of f(x + e). So, in order to take the derivative of
// any function, it is only necessary to replace the numeric "object" used in
// the function with one extended with infinitesimals. The class Jet, defined in
// this header, is one such example of this, where substitution is done with
// templates.
//
// To handle derivatives of functions taking multiple arguments, different
// infinitesimals are used, one for each variable to take the derivative of. For
// example, consider a scalar function of two scalar parameters x and y:
//
//   f(x, y) = x^2 + x * y
//
// Following the technique above, to compute the derivatives df/dx and df/dy for
// f(1, 3) involves doing two evaluations of f, the first time replacing x with
// x + e, the second time replacing y with y + e.
//
// For df/dx:
//
//   f(1 + e, y) = (1 + e)^2 + (1 + e) * 3
//               = 1 + 2 * e + 3 + 3 * e
//               = 4 + 5 * e
//
//               --> df/dx = 5
//
// For df/dy:
//
//   f(1, 3 + e) = 1^2 + 1 * (3 + e)
//               = 1 + 3 + e
//               = 4 + e
//
//               --> df/dy = 1
//
// To take the gradient of f with the implementation of dual numbers ("jets") in
// this file, it is necessary to create a single jet type which has components
// for the derivative in x and y, and passing them to a templated version of f:
//
//   template<typename T>
//   T f(const T &x, const T &y) {
//     return x * x + x * y;
//   }
//
//   // The "2" means there should be 2 dual number components.
//   // It computes the partial derivative at x=10, y=20.
//   Jet<double, 2> x(10, 0);  // Pick the 0th dual number for x.
//   Jet<double, 2> y(20, 1);  // Pick the 1st dual number for y.
//   Jet<double, 2> z = f(x, y);
//
//   LOG(INFO) << "df/dx = " << z.v[0]
//             << "df/dy = " << z.v[1];
//
// Most users should not use Jet objects directly; a wrapper around Jet objects,
// which makes computing the derivative, gradient, or jacobian of templated
// functors simple, is in autodiff.h. Even autodiff.h should not be used
// directly; instead autodiff_cost_function.h is typically the file of interest.
//
// For the more mathematically inclined, this file implements first-order
// "jets". A 1st order jet is an element of the ring
//
//   T[N] = T[t_1, ..., t_N] / (t_1, ..., t_N)^2
//
// which essentially means that each jet consists of a "scalar" value 'a' from T
// and a 1st order perturbation vector 'v' of length N:
//
//   x = a + \sum_i v[i] t_i
//
// A shorthand is to write an element as x = a + u, where u is the perturbation.
// Then, the main point about the arithmetic of jets is that the product of
// perturbations is zero:
//
//   (a + u) * (b + v) = ab + av + bu + uv
//                     = ab + (av + bu) + 0
//
// which is what operator* implements below. Addition is simpler:
//
//   (a + u) + (b + v) = (a + b) + (u + v).
//
// The only remaining question is how to evaluate the function of a jet, for
// which we use the chain rule:
//
//   f(a + u) = f(a) + f'(a) u
//
// where f'(a) is the (scalar) derivative of f at a.
//
// By pushing these things through sufficiently and suitably templated
// functions, we can do automatic differentiation. Just be sure to turn on
// function inlining and common-subexpression elimination, or it will be very
// slow!
//
// WARNING: Most Ceres users should not directly include this file or know the
// details of how jets work. Instead the suggested method for automatic
// derivatives is to use autodiff_cost_function.h, which is a wrapper around
// both jets.h and autodiff.h to make taking derivatives of cost functions for
// use in Ceres easier.

#ifndef CERES_PUBLIC_JET_H_
#define CERES_PUBLIC_JET_H_

#include <cmath>
#include <complex>
#include <iosfwd>
#include <iostream>  // NOLINT
#include <limits>
#include <numeric>
#include <string>
#include <type_traits>

#include "Eigen/Core"
#include "ceres/internal/jet_traits.h"
#include "ceres/internal/port.h"
#include "ceres/jet_fwd.h"

// Here we provide partial specializations of std::common_type for the Jet class
// to allow determining a Jet type with a common underlying arithmetic type.
// Such an arithmetic type can be either a scalar or an another Jet. An example
// for a common type, say, between a float and a Jet<double, N> is a Jet<double,
// N> (i.e., std::common_type_t<float, ceres::Jet<double, N>> and
// ceres::Jet<double, N> refer to the same type.)
//
// The partial specialization are also used for determining compatible types by
// means of SFINAE and thus allow such types to be expressed as operands of
// logical comparison operators. Missing (partial) specialization of
// std::common_type for a particular (custom) type will therefore disable the
// use of comparison operators defined by Ceres.
//
// Since these partial specializations are used as SFINAE constraints, they
// enable standard promotion rules between various scalar types and consequently
// their use in comparison against a Jet without providing implicit
// conversions from a scalar, such as an int, to a Jet (see the implementation
// of logical comparison operators below).

template <typename T, int N, typename U>
struct std::common_type<T, ceres::Jet<U, N>> {
  using type = ceres::Jet<common_type_t<T, U>, N>;
};

template <typename T, int N, typename U>
struct std::common_type<ceres::Jet<T, N>, U> {
  using type = ceres::Jet<common_type_t<T, U>, N>;
};

template <typename T, int N, typename U>
struct std::common_type<ceres::Jet<T, N>, ceres::Jet<U, N>> {
  using type = ceres::Jet<common_type_t<T, U>, N>;
};

namespace ceres {

template <typename T, int N>
struct Jet {
  enum { DIMENSION = N };
  using Scalar = T;

  // Default-construct "a" because otherwise this can lead to false errors about
  // uninitialized uses when other classes relying on default constructed T
  // (where T is a Jet<T, N>). This usually only happens in opt mode. Note that
  // the C++ standard mandates that e.g. default constructed doubles are
  // initialized to 0.0; see sections 8.5 of the C++03 standard.
  Jet() : a() { v.setConstant(Scalar()); }

  // Constructor from scalar: a + 0.
  explicit Jet(const T& value) {
    a = value;
    v.setConstant(Scalar());
  }

  // Constructor from scalar plus variable: a + t_i.
  Jet(const T& value, int k) {
    a = value;
    v.setConstant(Scalar());
    v[k] = T(1.0);
  }

  // Constructor from scalar and vector part
  // The use of Eigen::DenseBase allows Eigen expressions
  // to be passed in without being fully evaluated until
  // they are assigned to v
  template <typename Derived>
  EIGEN_STRONG_INLINE Jet(const T& a, const Eigen::DenseBase<Derived>& v)
      : a(a), v(v) {}

  // Compound operators
  Jet<T, N>& operator+=(const Jet<T, N>& y) {
    *this = *this + y;
    return *this;
  }

  Jet<T, N>& operator-=(const Jet<T, N>& y) {
    *this = *this - y;
    return *this;
  }

  Jet<T, N>& operator*=(const Jet<T, N>& y) {
    *this = *this * y;
    return *this;
  }

  Jet<T, N>& operator/=(const Jet<T, N>& y) {
    *this = *this / y;
    return *this;
  }

  // Compound with scalar operators.
  Jet<T, N>& operator+=(const T& s) {
    *this = *this + s;
    return *this;
  }

  Jet<T, N>& operator-=(const T& s) {
    *this = *this - s;
    return *this;
  }

  Jet<T, N>& operator*=(const T& s) {
    *this = *this * s;
    return *this;
  }

  Jet<T, N>& operator/=(const T& s) {
    *this = *this / s;
    return *this;
  }

  // The scalar part.
  T a;

  // The infinitesimal part.
  Eigen::Matrix<T, N, 1> v;

  // This struct needs to have an Eigen aligned operator new as it contains
  // fixed-size Eigen types.
  EIGEN_MAKE_ALIGNED_OPERATOR_NEW
};

// Unary +
template <typename T, int N>
inline Jet<T, N> const& operator+(const Jet<T, N>& f) {
  return f;
}

// TODO(keir): Try adding __attribute__((always_inline)) to these functions to
// see if it causes a performance increase.

// Unary -
template <typename T, int N>
inline Jet<T, N> operator-(const Jet<T, N>& f) {
  return Jet<T, N>(-f.a, -f.v);
}

// Binary +
template <typename T, int N>
inline Jet<T, N> operator+(const Jet<T, N>& f, const Jet<T, N>& g) {
  return Jet<T, N>(f.a + g.a, f.v + g.v);
}

// Binary + with a scalar: x + s
template <typename T, int N>
inline Jet<T, N> operator+(const Jet<T, N>& f, T s) {
  return Jet<T, N>(f.a + s, f.v);
}

// Binary + with a scalar: s + x
template <typename T, int N>
inline Jet<T, N> operator+(T s, const Jet<T, N>& f) {
  return Jet<T, N>(f.a + s, f.v);
}

// Binary -
template <typename T, int N>
inline Jet<T, N> operator-(const Jet<T, N>& f, const Jet<T, N>& g) {
  return Jet<T, N>(f.a - g.a, f.v - g.v);
}

// Binary - with a scalar: x - s
template <typename T, int N>
inline Jet<T, N> operator-(const Jet<T, N>& f, T s) {
  return Jet<T, N>(f.a - s, f.v);
}

// Binary - with a scalar: s - x
template <typename T, int N>
inline Jet<T, N> operator-(T s, const Jet<T, N>& f) {
  return Jet<T, N>(s - f.a, -f.v);
}

// Binary *
template <typename T, int N>
inline Jet<T, N> operator*(const Jet<T, N>& f, const Jet<T, N>& g) {
  return Jet<T, N>(f.a * g.a, f.a * g.v + f.v * g.a);
}

// Binary * with a scalar: x * s
template <typename T, int N>
inline Jet<T, N> operator*(const Jet<T, N>& f, T s) {
  return Jet<T, N>(f.a * s, f.v * s);
}

// Binary * with a scalar: s * x
template <typename T, int N>
inline Jet<T, N> operator*(T s, const Jet<T, N>& f) {
  return Jet<T, N>(f.a * s, f.v * s);
}

// Binary /
template <typename T, int N>
inline Jet<T, N> operator/(const Jet<T, N>& f, const Jet<T, N>& g) {
  // This uses:
  //
  //   a + u   (a + u)(b - v)   (a + u)(b - v)
  //   ----- = -------------- = --------------
  //   b + v   (b + v)(b - v)        b^2
  //
  // which holds because v*v = 0.
  const T g_a_inverse = T(1.0) / g.a;
  const T f_a_by_g_a = f.a * g_a_inverse;
  return Jet<T, N>(f_a_by_g_a, (f.v - f_a_by_g_a * g.v) * g_a_inverse);
}

// Binary / with a scalar: s / x
template <typename T, int N>
inline Jet<T, N> operator/(T s, const Jet<T, N>& g) {
  const T minus_s_g_a_inverse2 = -s / (g.a * g.a);
  return Jet<T, N>(s / g.a, g.v * minus_s_g_a_inverse2);
}

// Binary / with a scalar: x / s
template <typename T, int N>
inline Jet<T, N> operator/(const Jet<T, N>& f, T s) {
  const T s_inverse = T(1.0) / s;
  return Jet<T, N>(f.a * s_inverse, f.v * s_inverse);
}

// Binary comparison operators for both scalars and jets. At least one of the
// operands must be a Jet. Promotable scalars (e.g., int, float, double etc.)
// can appear on either side of the operator. std::common_type_t is used as an
// SFINAE constraint to selectively enable compatible operand types. This allows
// comparison, for instance, against int literals without implicit conversion.
// In case the Jet arithmetic type is a Jet itself, a recursive expansion of Jet
// value is performed.
#define CERES_DEFINE_JET_COMPARISON_OPERATOR(op)                            \
  template <typename Lhs,                                                   \
            typename Rhs,                                                   \
            std::enable_if_t<PromotableJetOperands_v<Lhs, Rhs>>* = nullptr> \
  constexpr bool operator op(const Lhs& f, const Rhs& g) noexcept(          \
      noexcept(internal::AsScalar(f) op internal::AsScalar(g))) {           \
    using internal::AsScalar;                                               \
    return AsScalar(f) op AsScalar(g);                                      \
  }
CERES_DEFINE_JET_COMPARISON_OPERATOR(<)   // NOLINT
CERES_DEFINE_JET_COMPARISON_OPERATOR(<=)  // NOLINT
CERES_DEFINE_JET_COMPARISON_OPERATOR(>)   // NOLINT
CERES_DEFINE_JET_COMPARISON_OPERATOR(>=)  // NOLINT
CERES_DEFINE_JET_COMPARISON_OPERATOR(==)  // NOLINT
CERES_DEFINE_JET_COMPARISON_OPERATOR(!=)  // NOLINT
#undef CERES_DEFINE_JET_COMPARISON_OPERATOR

// Pull some functions from namespace std.
//
// This is necessary because we want to use the same name (e.g. 'sqrt') for
// double-valued and Jet-valued functions, but we are not allowed to put
// Jet-valued functions inside namespace std.
using std::abs;
using std::acos;
using std::asin;
using std::atan;
using std::atan2;
using std::cbrt;
using std::ceil;
using std::copysign;
using std::cos;
using std::cosh;
using std::erf;
using std::erfc;
using std::exp;
using std::exp2;
using std::expm1;
using std::fdim;
using std::floor;
using std::fma;
using std::fmax;
using std::fmin;
using std::fpclassify;
using std::hypot;
using std::isfinite;
using std::isinf;
using std::isnan;
using std::isnormal;
using std::log;
using std::log10;
using std::log1p;
using std::log2;
using std::norm;
using std::pow;
using std::signbit;
using std::sin;
using std::sinh;
using std::sqrt;
using std::tan;
using std::tanh;

// MSVC (up to 1930) defines quiet comparison functions as template functions
// which causes compilation errors due to ambiguity in the template parameter
// type resolution for using declarations in the ceres namespace. Workaround the
// issue by defining specific overload and bypass MSVC standard library
// definitions.
#if defined(_MSC_VER)
inline bool isgreater(double lhs,
                      double rhs) noexcept(noexcept(std::isgreater(lhs, rhs))) {
  return std::isgreater(lhs, rhs);
}
inline bool isless(double lhs,
                   double rhs) noexcept(noexcept(std::isless(lhs, rhs))) {
  return std::isless(lhs, rhs);
}
inline bool islessequal(double lhs,
                        double rhs) noexcept(noexcept(std::islessequal(lhs,
                                                                       rhs))) {
  return std::islessequal(lhs, rhs);
}
inline bool isgreaterequal(double lhs, double rhs) noexcept(
    noexcept(std::isgreaterequal(lhs, rhs))) {
  return std::isgreaterequal(lhs, rhs);
}
inline bool islessgreater(double lhs, double rhs) noexcept(
    noexcept(std::islessgreater(lhs, rhs))) {
  return std::islessgreater(lhs, rhs);
}
inline bool isunordered(double lhs,
                        double rhs) noexcept(noexcept(std::isunordered(lhs,
                                                                       rhs))) {
  return std::isunordered(lhs, rhs);
}
#else
using std::isgreater;
using std::isgreaterequal;
using std::isless;
using std::islessequal;
using std::islessgreater;
using std::isunordered;
#endif

#ifdef CERES_HAS_CPP20
using std::lerp;
using std::midpoint;
#endif  // defined(CERES_HAS_CPP20)

// Legacy names from pre-C++11 days.
// clang-format off
CERES_DEPRECATED_WITH_MSG("ceres::IsFinite will be removed in a future Ceres Solver release. Please use ceres::isfinite.")
inline bool IsFinite(double x)   { return std::isfinite(x); }
CERES_DEPRECATED_WITH_MSG("ceres::IsInfinite will be removed in a future Ceres Solver release. Please use ceres::isinf.")
inline bool IsInfinite(double x) { return std::isinf(x);    }
CERES_DEPRECATED_WITH_MSG("ceres::IsNaN will be removed in a future Ceres Solver release. Please use ceres::isnan.")
inline bool IsNaN(double x)      { return std::isnan(x);    }
CERES_DEPRECATED_WITH_MSG("ceres::IsNormal will be removed in a future Ceres Solver release. Please use ceres::isnormal.")
inline bool IsNormal(double x)   { return std::isnormal(x); }
// clang-format on

// In general, f(a + h) ~= f(a) + f'(a) h, via the chain rule.

// abs(x + h) ~= abs(x) + sgn(x)h
template <typename T, int N>
inline Jet<T, N> abs(const Jet<T, N>& f) {
  return Jet<T, N>(abs(f.a), copysign(T(1), f.a) * f.v);
}

// copysign(a, b) composes a float with the magnitude of a and the sign of b.
// Therefore, the function can be formally defined as
//
//   copysign(a, b) = sgn(b)|a|
//
// where
//
//   d/dx |x| = sgn(x)
//   d/dx sgn(x) = 2δ(x)
//
// sgn(x) being the signum function. Differentiating copysign(a, b) with respect
// to a and b gives:
//
//   d/da sgn(b)|a| = sgn(a) sgn(b)
//   d/db sgn(b)|a| = 2|a|δ(b)
//
// with the dual representation given by
//
//   copysign(a + da, b + db) ~= sgn(b)|a| + (sgn(a)sgn(b) da + 2|a|δ(b) db)
//
// where δ(b) is the Dirac delta function.
template <typename T, int N>
inline Jet<T, N> copysign(const Jet<T, N>& f, const Jet<T, N> g) {
  // The Dirac delta function  δ(b) is undefined at b=0 (here it's
  // infinite) and 0 everywhere else.
  T d = fpclassify(g) == FP_ZERO ? std::numeric_limits<T>::infinity() : T(0);
  T sa = copysign(T(1), f.a);  // sgn(a)
  T sb = copysign(T(1), g.a);  // sgn(b)
  // The second part of the infinitesimal is 2|a|δ(b) which is either infinity
  // or 0 unless a or any of the values of the b infinitesimal are 0. In the
  // latter case, the corresponding values become NaNs (multiplying 0 by
  // infinity gives NaN). We drop the constant factor 2 since it does not change
  // the result (its values will still be either 0, infinity or NaN).
  return Jet<T, N>(copysign(f.a, g.a), sa * sb * f.v + abs(f.a) * d * g.v);
}

// log(a + h) ~= log(a) + h / a
template <typename T, int N>
inline Jet<T, N> log(const Jet<T, N>& f) {
  const T a_inverse = T(1.0) / f.a;
  return Jet<T, N>(log(f.a), f.v * a_inverse);
}

// log10(a + h) ~= log10(a) + h / (a log(10))
template <typename T, int N>
inline Jet<T, N> log10(const Jet<T, N>& f) {
  // Most compilers will expand log(10) to a constant.
  const T a_inverse = T(1.0) / (f.a * log(T(10.0)));
  return Jet<T, N>(log10(f.a), f.v * a_inverse);
}

// log1p(a + h) ~= log1p(a) + h / (1 + a)
template <typename T, int N>
inline Jet<T, N> log1p(const Jet<T, N>& f) {
  const T a_inverse = T(1.0) / (T(1.0) + f.a);
  return Jet<T, N>(log1p(f.a), f.v * a_inverse);
}

// exp(a + h) ~= exp(a) + exp(a) h
template <typename T, int N>
inline Jet<T, N> exp(const Jet<T, N>& f) {
  const T tmp = exp(f.a);
  return Jet<T, N>(tmp, tmp * f.v);
}

// expm1(a + h) ~= expm1(a) + exp(a) h
template <typename T, int N>
inline Jet<T, N> expm1(const Jet<T, N>& f) {
  const T tmp = expm1(f.a);
  const T expa = tmp + T(1.0);  // exp(a) = expm1(a) + 1
  return Jet<T, N>(tmp, expa * f.v);
}

// sqrt(a + h) ~= sqrt(a) + h / (2 sqrt(a))
template <typename T, int N>
inline Jet<T, N> sqrt(const Jet<T, N>& f) {
  const T tmp = sqrt(f.a);
  const T two_a_inverse = T(1.0) / (T(2.0) * tmp);
  return Jet<T, N>(tmp, f.v * two_a_inverse);
}

// cos(a + h) ~= cos(a) - sin(a) h
template <typename T, int N>
inline Jet<T, N> cos(const Jet<T, N>& f) {
  return Jet<T, N>(cos(f.a), -sin(f.a) * f.v);
}

// acos(a + h) ~= acos(a) - 1 / sqrt(1 - a^2) h
template <typename T, int N>
inline Jet<T, N> acos(const Jet<T, N>& f) {
  const T tmp = -T(1.0) / sqrt(T(1.0) - f.a * f.a);
  return Jet<T, N>(acos(f.a), tmp * f.v);
}

// sin(a + h) ~= sin(a) + cos(a) h
template <typename T, int N>
inline Jet<T, N> sin(const Jet<T, N>& f) {
  return Jet<T, N>(sin(f.a), cos(f.a) * f.v);
}

// asin(a + h) ~= asin(a) + 1 / sqrt(1 - a^2) h
template <typename T, int N>
inline Jet<T, N> asin(const Jet<T, N>& f) {
  const T tmp = T(1.0) / sqrt(T(1.0) - f.a * f.a);
  return Jet<T, N>(asin(f.a), tmp * f.v);
}

// tan(a + h) ~= tan(a) + (1 + tan(a)^2) h
template <typename T, int N>
inline Jet<T, N> tan(const Jet<T, N>& f) {
  const T tan_a = tan(f.a);
  const T tmp = T(1.0) + tan_a * tan_a;
  return Jet<T, N>(tan_a, tmp * f.v);
}

// atan(a + h) ~= atan(a) + 1 / (1 + a^2) h
template <typename T, int N>
inline Jet<T, N> atan(const Jet<T, N>& f) {
  const T tmp = T(1.0) / (T(1.0) + f.a * f.a);
  return Jet<T, N>(atan(f.a), tmp * f.v);
}

// sinh(a + h) ~= sinh(a) + cosh(a) h
template <typename T, int N>
inline Jet<T, N> sinh(const Jet<T, N>& f) {
  return Jet<T, N>(sinh(f.a), cosh(f.a) * f.v);
}

// cosh(a + h) ~= cosh(a) + sinh(a) h
template <typename T, int N>
inline Jet<T, N> cosh(const Jet<T, N>& f) {
  return Jet<T, N>(cosh(f.a), sinh(f.a) * f.v);
}

// tanh(a + h) ~= tanh(a) + (1 - tanh(a)^2) h
template <typename T, int N>
inline Jet<T, N> tanh(const Jet<T, N>& f) {
  const T tanh_a = tanh(f.a);
  const T tmp = T(1.0) - tanh_a * tanh_a;
  return Jet<T, N>(tanh_a, tmp * f.v);
}

// The floor function should be used with extreme care as this operation will
// result in a zero derivative which provides no information to the solver.
//
// floor(a + h) ~= floor(a) + 0
template <typename T, int N>
inline Jet<T, N> floor(const Jet<T, N>& f) {
  return Jet<T, N>(floor(f.a));
}

// The ceil function should be used with extreme care as this operation will
// result in a zero derivative which provides no information to the solver.
//
// ceil(a + h) ~= ceil(a) + 0
template <typename T, int N>
inline Jet<T, N> ceil(const Jet<T, N>& f) {
  return Jet<T, N>(ceil(f.a));
}

// Some new additions to C++11:

// cbrt(a + h) ~= cbrt(a) + h / (3 a ^ (2/3))
template <typename T, int N>
inline Jet<T, N> cbrt(const Jet<T, N>& f) {
  const T derivative = T(1.0) / (T(3.0) * cbrt(f.a * f.a));
  return Jet<T, N>(cbrt(f.a), f.v * derivative);
}

// exp2(x + h) = 2^(x+h) ~= 2^x + h*2^x*log(2)
template <typename T, int N>
inline Jet<T, N> exp2(const Jet<T, N>& f) {
  const T tmp = exp2(f.a);
  const T derivative = tmp * log(T(2));
  return Jet<T, N>(tmp, f.v * derivative);
}

// log2(x + h) ~= log2(x) + h / (x * log(2))
template <typename T, int N>
inline Jet<T, N> log2(const Jet<T, N>& f) {
  const T derivative = T(1.0) / (f.a * log(T(2)));
  return Jet<T, N>(log2(f.a), f.v * derivative);
}

// Like sqrt(x^2 + y^2),
// but acts to prevent underflow/overflow for small/large x/y.
// Note that the function is non-smooth at x=y=0,
// so the derivative is undefined there.
template <typename T, int N>
inline Jet<T, N> hypot(const Jet<T, N>& x, const Jet<T, N>& y) {
  // d/da sqrt(a) = 0.5 / sqrt(a)
  // d/dx x^2 + y^2 = 2x
  // So by the chain rule:
  // d/dx sqrt(x^2 + y^2) = 0.5 / sqrt(x^2 + y^2) * 2x = x / sqrt(x^2 + y^2)
  // d/dy sqrt(x^2 + y^2) = y / sqrt(x^2 + y^2)
  const T tmp = hypot(x.a, y.a);
  return Jet<T, N>(tmp, x.a / tmp * x.v + y.a / tmp * y.v);
}

#ifdef CERES_HAS_CPP17
// Like sqrt(x^2 + y^2 + z^2),
// but acts to prevent underflow/overflow for small/large x/y/z.
// Note that the function is non-smooth at x=y=z=0,
// so the derivative is undefined there.
template <typename T, int N>
inline Jet<T, N> hypot(const Jet<T, N>& x,
                       const Jet<T, N>& y,
                       const Jet<T, N>& z) {
  // d/da sqrt(a) = 0.5 / sqrt(a)
  // d/dx x^2 + y^2 + z^2 = 2x
  // So by the chain rule:
  // d/dx sqrt(x^2 + y^2 + z^2)
  //    = 0.5 / sqrt(x^2 + y^2 + z^2) * 2x
  //    = x / sqrt(x^2 + y^2 + z^2)
  // d/dy sqrt(x^2 + y^2 + z^2) = y / sqrt(x^2 + y^2 + z^2)
  // d/dz sqrt(x^2 + y^2 + z^2) = z / sqrt(x^2 + y^2 + z^2)
  const T tmp = hypot(x.a, y.a, z.a);
  return Jet<T, N>(tmp, x.a / tmp * x.v + y.a / tmp * y.v + z.a / tmp * z.v);
}
#endif  // defined(CERES_HAS_CPP17)

// Like x * y + z but rounded only once.
template <typename T, int N>
inline Jet<T, N> fma(const Jet<T, N>& x,
                     const Jet<T, N>& y,
                     const Jet<T, N>& z) {
  // d/dx fma(x, y, z) = y
  // d/dy fma(x, y, z) = x
  // d/dz fma(x, y, z) = 1
  return Jet<T, N>(fma(x.a, y.a, z.a), y.a * x.v + x.a * y.v + z.v);
}

// Returns the larger of the two arguments. NaNs are treated as missing data.
//
// NOTE: This function is NOT subject to any of the error conditions specified
// in `math_errhandling`.
template <typename Lhs,
          typename Rhs,
          std::enable_if_t<CompatibleJetOperands_v<Lhs, Rhs>>* = nullptr>
inline decltype(auto) fmax(const Lhs& f, const Rhs& g) {
  using J = std::common_type_t<Lhs, Rhs>;
  return (isnan(g) || isgreater(f, g)) ? J{f} : J{g};
}

// Returns the smaller of the two arguments. NaNs are treated as missing data.
//
// NOTE: This function is NOT subject to any of the error conditions specified
// in `math_errhandling`.
template <typename Lhs,
          typename Rhs,
          std::enable_if_t<CompatibleJetOperands_v<Lhs, Rhs>>* = nullptr>
inline decltype(auto) fmin(const Lhs& f, const Rhs& g) {
  using J = std::common_type_t<Lhs, Rhs>;
  return (isnan(f) || isless(g, f)) ? J{g} : J{f};
}

// Returns the positive difference (f - g) of two arguments and zero if f <= g.
// If at least one argument is NaN, a NaN is return.
//
// NOTE At least one of the argument types must be a Jet, the other one can be a
// scalar. In case both arguments are Jets, their dimensionality must match.
template <typename Lhs,
          typename Rhs,
          std::enable_if_t<CompatibleJetOperands_v<Lhs, Rhs>>* = nullptr>
inline decltype(auto) fdim(const Lhs& f, const Rhs& g) {
  using J = std::common_type_t<Lhs, Rhs>;
  if (isnan(f) || isnan(g)) {
    return std::numeric_limits<J>::quiet_NaN();
  }
  return isgreater(f, g) ? J{f - g} : J{};
}

// erf is defined as an integral that cannot be expressed analytically
// however, the derivative is trivial to compute
// erf(x + h) = erf(x) + h * 2*exp(-x^2)/sqrt(pi)
template <typename T, int N>
inline Jet<T, N> erf(const Jet<T, N>& x) {
  // We evaluate the constant as follows:
  //   2 / sqrt(pi) = 1 / sqrt(atan(1.))
  // On POSIX sytems it is defined as M_2_SQRTPI, but this is not
  // portable and the type may not be T.  The above expression
  // evaluates to full precision with IEEE arithmetic and, since it's
  // constant, the compiler can generate exactly the same code.  gcc
  // does so even at -O0.
  return Jet<T, N>(erf(x.a), x.v * exp(-x.a * x.a) * (T(1) / sqrt(atan(T(1)))));
}

// erfc(x) = 1-erf(x)
// erfc(x + h) = erfc(x) + h * (-2*exp(-x^2)/sqrt(pi))
template <typename T, int N>
inline Jet<T, N> erfc(const Jet<T, N>& x) {
  // See in erf() above for the evaluation of the constant in the derivative.
  return Jet<T, N>(erfc(x.a),
                   -x.v * exp(-x.a * x.a) * (T(1) / sqrt(atan(T(1)))));
}

// Bessel functions of the first kind with integer order equal to 0, 1, n.
//
// Microsoft has deprecated the j[0,1,n]() POSIX Bessel functions in favour of
// _j[0,1,n]().  Where available on MSVC, use _j[0,1,n]() to avoid deprecated
// function errors in client code (the specific warning is suppressed when
// Ceres itself is built).
inline double BesselJ0(double x) {
#if defined(CERES_MSVC_USE_UNDERSCORE_PREFIXED_BESSEL_FUNCTIONS)
  return _j0(x);
#else
  return j0(x);
#endif
}
inline double BesselJ1(double x) {
#if defined(CERES_MSVC_USE_UNDERSCORE_PREFIXED_BESSEL_FUNCTIONS)
  return _j1(x);
#else
  return j1(x);
#endif
}
inline double BesselJn(int n, double x) {
#if defined(CERES_MSVC_USE_UNDERSCORE_PREFIXED_BESSEL_FUNCTIONS)
  return _jn(n, x);
#else
  return jn(n, x);
#endif
}

// For the formulae of the derivatives of the Bessel functions see the book:
// Olver, Lozier, Boisvert, Clark, NIST Handbook of Mathematical Functions,
// Cambridge University Press 2010.
//
// Formulae are also available at http://dlmf.nist.gov

// See formula http://dlmf.nist.gov/10.6#E3
// j0(a + h) ~= j0(a) - j1(a) h
template <typename T, int N>
inline Jet<T, N> BesselJ0(const Jet<T, N>& f) {
  return Jet<T, N>(BesselJ0(f.a), -BesselJ1(f.a) * f.v);
}

// See formula http://dlmf.nist.gov/10.6#E1
// j1(a + h) ~= j1(a) + 0.5 ( j0(a) - j2(a) ) h
template <typename T, int N>
inline Jet<T, N> BesselJ1(const Jet<T, N>& f) {
  return Jet<T, N>(BesselJ1(f.a),
                   T(0.5) * (BesselJ0(f.a) - BesselJn(2, f.a)) * f.v);
}

// See formula http://dlmf.nist.gov/10.6#E1
// j_n(a + h) ~= j_n(a) + 0.5 ( j_{n-1}(a) - j_{n+1}(a) ) h
template <typename T, int N>
inline Jet<T, N> BesselJn(int n, const Jet<T, N>& f) {
  return Jet<T, N>(
      BesselJn(n, f.a),
      T(0.5) * (BesselJn(n - 1, f.a) - BesselJn(n + 1, f.a)) * f.v);
}

// Classification and comparison functionality referencing only the scalar part
// of a Jet. To classify the derivatives (e.g., for sanity checks), the dual
// part should be referenced explicitly. For instance, to check whether the
// derivatives of a Jet 'f' are reasonable, one can use
//
//  isfinite(f.v.array()).all()
//  !isnan(f.v.array()).any()
//
// etc., depending on the desired semantics.
//
// NOTE: Floating-point classification and comparison functions and operators
// should be used with care as no derivatives can be propagated by such
// functions directly but only by expressions resulting from corresponding
// conditional statements. At the same time, conditional statements can possibly
// introduce a discontinuity in the cost function making it impossible to
// evaluate its derivative and thus the optimization problem intractable.

// Determines whether the scalar part of the Jet is finite.
template <typename T, int N>
inline bool isfinite(const Jet<T, N>& f) {
  return isfinite(f.a);
}

// Determines whether the scalar part of the Jet is infinite.
template <typename T, int N>
inline bool isinf(const Jet<T, N>& f) {
  return isinf(f.a);
}

// Determines whether the scalar part of the Jet is NaN.
template <typename T, int N>
inline bool isnan(const Jet<T, N>& f) {
  return isnan(f.a);
}

// Determines whether the scalar part of the Jet is neither zero, subnormal,
// infinite, nor NaN.
template <typename T, int N>
inline bool isnormal(const Jet<T, N>& f) {
  return isnormal(f.a);
}

// Determines whether the scalar part of the Jet f is less than the scalar
// part of g.
//
// NOTE: This function does NOT set any floating-point exceptions.
template <typename Lhs,
          typename Rhs,
          std::enable_if_t<CompatibleJetOperands_v<Lhs, Rhs>>* = nullptr>
inline bool isless(const Lhs& f, const Rhs& g) {
  using internal::AsScalar;
  return isless(AsScalar(f), AsScalar(g));
}

// Determines whether the scalar part of the Jet f is greater than the scalar
// part of g.
//
// NOTE: This function does NOT set any floating-point exceptions.
template <typename Lhs,
          typename Rhs,
          std::enable_if_t<CompatibleJetOperands_v<Lhs, Rhs>>* = nullptr>
inline bool isgreater(const Lhs& f, const Rhs& g) {
  using internal::AsScalar;
  return isgreater(AsScalar(f), AsScalar(g));
}

// Determines whether the scalar part of the Jet f is less than or equal to the
// scalar part of g.
//
// NOTE: This function does NOT set any floating-point exceptions.
template <typename Lhs,
          typename Rhs,
          std::enable_if_t<CompatibleJetOperands_v<Lhs, Rhs>>* = nullptr>
inline bool islessequal(const Lhs& f, const Rhs& g) {
  using internal::AsScalar;
  return islessequal(AsScalar(f), AsScalar(g));
}

// Determines whether the scalar part of the Jet f is less than or greater than
// (f < g || f > g) the scalar part of g.
//
// NOTE: This function does NOT set any floating-point exceptions.
template <typename Lhs,
          typename Rhs,
          std::enable_if_t<CompatibleJetOperands_v<Lhs, Rhs>>* = nullptr>
inline bool islessgreater(const Lhs& f, const Rhs& g) {
  using internal::AsScalar;
  return islessgreater(AsScalar(f), AsScalar(g));
}

// Determines whether the scalar part of the Jet f is greater than or equal to
// the scalar part of g.
//
// NOTE: This function does NOT set any floating-point exceptions.
template <typename Lhs,
          typename Rhs,
          std::enable_if_t<CompatibleJetOperands_v<Lhs, Rhs>>* = nullptr>
inline bool isgreaterequal(const Lhs& f, const Rhs& g) {
  using internal::AsScalar;
  return isgreaterequal(AsScalar(f), AsScalar(g));
}

// Determines if either of the scalar parts of the arguments are NaN and
// thus cannot be ordered with respect to each other.
template <typename Lhs,
          typename Rhs,
          std::enable_if_t<CompatibleJetOperands_v<Lhs, Rhs>>* = nullptr>
inline bool isunordered(const Lhs& f, const Rhs& g) {
  using internal::AsScalar;
  return isunordered(AsScalar(f), AsScalar(g));
}

// Categorize scalar part as zero, subnormal, normal, infinite, NaN, or
// implementation-defined.
template <typename T, int N>
inline int fpclassify(const Jet<T, N>& f) {
  return fpclassify(f.a);
}

// Determines whether the scalar part of the argument is negative.
template <typename T, int N>
inline bool signbit(const Jet<T, N>& f) {
  return signbit(f.a);
}

// Legacy functions from the pre-C++11 days.
template <typename T, int N>
CERES_DEPRECATED_WITH_MSG(
    "ceres::IsFinite will be removed in a future Ceres Solver release. Please "
    "use ceres::isfinite.")
inline bool IsFinite(const Jet<T, N>& f) {
  return isfinite(f);
}

template <typename T, int N>
CERES_DEPRECATED_WITH_MSG(
    "ceres::IsNaN will be removed in a future Ceres Solver release. Please use "
    "ceres::isnan.")
inline bool IsNaN(const Jet<T, N>& f) {
  return isnan(f);
}

template <typename T, int N>
CERES_DEPRECATED_WITH_MSG(
    "ceres::IsNormal will be removed in a future Ceres Solver release. Please "
    "use ceres::isnormal.")
inline bool IsNormal(const Jet<T, N>& f) {
  return isnormal(f);
}

// The jet is infinite if any part of the jet is infinite.
template <typename T, int N>
CERES_DEPRECATED_WITH_MSG(
    "ceres::IsInfinite will be removed in a future Ceres Solver release. "
    "Please use ceres::isinf.")
inline bool IsInfinite(const Jet<T, N>& f) {
  return isinf(f);
}

#ifdef CERES_HAS_CPP20
// Computes the linear interpolation a + t(b - a) between a and b at the value
// t. For arguments outside of the range 0 <= t <= 1, the values are
// extrapolated.
//
// Differentiating lerp(a, b, t) with respect to a, b, and t gives:
//
//   d/da lerp(a, b, t) = 1 - t
//   d/db lerp(a, b, t) = t
//   d/dt lerp(a, b, t) = b - a
//
// with the dual representation given by
//
//   lerp(a + da, b + db, t + dt)
//      ~= lerp(a, b, t) + (1 - t) da + t db + (b - a) dt .
template <typename T, int N>
inline Jet<T, N> lerp(const Jet<T, N>& a,
                      const Jet<T, N>& b,
                      const Jet<T, N>& t) {
  return Jet<T, N>{lerp(a.a, b.a, t.a),
                   (T(1) - t.a) * a.v + t.a * b.v + (b.a - a.a) * t.v};
}

// Computes the midpoint a + (b - a) / 2.
//
// Differentiating midpoint(a, b) with respect to a and b gives:
//
//   d/da midpoint(a, b) = 1/2
//   d/db midpoint(a, b) = 1/2
//
// with the dual representation given by
//
//   midpoint(a + da, b + db) ~= midpoint(a, b) + (da + db) / 2 .
template <typename T, int N>
inline Jet<T, N> midpoint(const Jet<T, N>& a, const Jet<T, N>& b) {
  Jet<T, N> result{midpoint(a.a, b.a)};
  // To avoid overflow in the differential, compute
  // (da + db) / 2 using midpoint.
  for (int i = 0; i < N; ++i) {
    result.v[i] = midpoint(a.v[i], b.v[i]);
  }
  return result;
}
#endif  // defined(CERES_HAS_CPP20)

// atan2(b + db, a + da) ~= atan2(b, a) + (- b da + a db) / (a^2 + b^2)
//
// In words: the rate of change of theta is 1/r times the rate of
// change of (x, y) in the positive angular direction.
template <typename T, int N>
inline Jet<T, N> atan2(const Jet<T, N>& g, const Jet<T, N>& f) {
  // Note order of arguments:
  //
  //   f = a + da
  //   g = b + db

  T const tmp = T(1.0) / (f.a * f.a + g.a * g.a);
  return Jet<T, N>(atan2(g.a, f.a), tmp * (-g.a * f.v + f.a * g.v));
}

// Computes the square x^2 of a real number x (not the Euclidean L^2 norm as
// the name might suggest).
//
// NOTE: While std::norm is primarily intended for computing the squared
// magnitude of a std::complex<> number, the current Jet implementation does not
// support mixing a scalar T in its real part and std::complex<T> and in the
// infinitesimal. Mixed Jet support is necessary for the type decay from
// std::complex<T> to T (the squared magnitude of a complex number is always
// real) performed by std::norm.
//
// norm(x + h) ~= norm(x) + 2x h
template <typename T, int N>
inline Jet<T, N> norm(const Jet<T, N>& f) {
  return Jet<T, N>(norm(f.a), T(2) * f.a * f.v);
}

// pow -- base is a differentiable function, exponent is a constant.
// (a+da)^p ~= a^p + p*a^(p-1) da
template <typename T, int N>
inline Jet<T, N> pow(const Jet<T, N>& f, double g) {
  T const tmp = g * pow(f.a, g - T(1.0));
  return Jet<T, N>(pow(f.a, g), tmp * f.v);
}

// pow -- base is a constant, exponent is a differentiable function.
// We have various special cases, see the comment for pow(Jet, Jet) for
// analysis:
//
// 1. For f > 0 we have: (f)^(g + dg) ~= f^g + f^g log(f) dg
//
// 2. For f == 0 and g > 0 we have: (f)^(g + dg) ~= f^g
//
// 3. For f < 0 and integer g we have: (f)^(g + dg) ~= f^g but if dg
// != 0, the derivatives are not defined and we return NaN.

template <typename T, int N>
inline Jet<T, N> pow(T f, const Jet<T, N>& g) {
  Jet<T, N> result;

  if (fpclassify(f) == FP_ZERO && g > 0) {
    // Handle case 2.
    result = Jet<T, N>(T(0.0));
  } else {
    if (f < 0 && g == floor(g.a)) {  // Handle case 3.
      result = Jet<T, N>(pow(f, g.a));
      for (int i = 0; i < N; i++) {
        if (fpclassify(g.v[i]) != FP_ZERO) {
          // Return a NaN when g.v != 0.
          result.v[i] = std::numeric_limits<T>::quiet_NaN();
        }
      }
    } else {
      // Handle case 1.
      T const tmp = pow(f, g.a);
      result = Jet<T, N>(tmp, log(f) * tmp * g.v);
    }
  }

  return result;
}

// pow -- both base and exponent are differentiable functions. This has a
// variety of special cases that require careful handling.
//
// 1. For f > 0:
//    (f + df)^(g + dg) ~= f^g + f^(g - 1) * (g * df + f * log(f) * dg)
//    The numerical evaluation of f * log(f) for f > 0 is well behaved, even for
//    extremely small values (e.g. 1e-99).
//
// 2. For f == 0 and g > 1: (f + df)^(g + dg) ~= 0
//    This cases is needed because log(0) can not be evaluated in the f > 0
//    expression. However the function f*log(f) is well behaved around f == 0
//    and its limit as f-->0 is zero.
//
// 3. For f == 0 and g == 1: (f + df)^(g + dg) ~= 0 + df
//
// 4. For f == 0 and 0 < g < 1: The value is finite but the derivatives are not.
//
// 5. For f == 0 and g < 0: The value and derivatives of f^g are not finite.
//
// 6. For f == 0 and g == 0: The C standard incorrectly defines 0^0 to be 1
//    "because there are applications that can exploit this definition". We
//    (arbitrarily) decree that derivatives here will be nonfinite, since that
//    is consistent with the behavior for f == 0, g < 0 and 0 < g < 1.
//    Practically any definition could have been justified because mathematical
//    consistency has been lost at this point.
//
// 7. For f < 0, g integer, dg == 0: (f + df)^(g + dg) ~= f^g + g * f^(g - 1) df
//    This is equivalent to the case where f is a differentiable function and g
//    is a constant (to first order).
//
// 8. For f < 0, g integer, dg != 0: The value is finite but the derivatives are
//    not, because any change in the value of g moves us away from the point
//    with a real-valued answer into the region with complex-valued answers.
//
// 9. For f < 0, g noninteger: The value and derivatives of f^g are not finite.

template <typename T, int N>
inline Jet<T, N> pow(const Jet<T, N>& f, const Jet<T, N>& g) {
  Jet<T, N> result;

  if (fpclassify(f) == FP_ZERO && g >= 1) {
    // Handle cases 2 and 3.
    if (g > 1) {
      result = Jet<T, N>(T(0.0));
    } else {
      result = f;
    }

  } else {
    if (f < 0 && g == floor(g.a)) {
      // Handle cases 7 and 8.
      T const tmp = g.a * pow(f.a, g.a - T(1.0));
      result = Jet<T, N>(pow(f.a, g.a), tmp * f.v);
      for (int i = 0; i < N; i++) {
        if (fpclassify(g.v[i]) != FP_ZERO) {
          // Return a NaN when g.v != 0.
          result.v[i] = T(std::numeric_limits<double>::quiet_NaN());
        }
      }
    } else {
      // Handle the remaining cases. For cases 4,5,6,9 we allow the log()
      // function to generate -HUGE_VAL or NaN, since those cases result in a
      // nonfinite derivative.
      T const tmp1 = pow(f.a, g.a);
      T const tmp2 = g.a * pow(f.a, g.a - T(1.0));
      T const tmp3 = tmp1 * log(f.a);
      result = Jet<T, N>(tmp1, tmp2 * f.v + tmp3 * g.v);
    }
  }

  return result;
}

// Note: This has to be in the ceres namespace for argument dependent lookup to
// function correctly. Otherwise statements like CHECK_LE(x, 2.0) fail with
// strange compile errors.
template <typename T, int N>
inline std::ostream& operator<<(std::ostream& s, const Jet<T, N>& z) {
  s << "[" << z.a << " ; ";
  for (int i = 0; i < N; ++i) {
    s << z.v[i];
    if (i != N - 1) {
      s << ", ";
    }
  }
  s << "]";
  return s;
}
}  // namespace ceres

namespace std {
template <typename T, int N>
struct numeric_limits<ceres::Jet<T, N>> {
  static constexpr bool is_specialized = true;
  static constexpr bool is_signed = std::numeric_limits<T>::is_signed;
  static constexpr bool is_integer = std::numeric_limits<T>::is_integer;
  static constexpr bool is_exact = std::numeric_limits<T>::is_exact;
  static constexpr bool has_infinity = std::numeric_limits<T>::has_infinity;
  static constexpr bool has_quiet_NaN = std::numeric_limits<T>::has_quiet_NaN;
  static constexpr bool has_signaling_NaN =
      std::numeric_limits<T>::has_signaling_NaN;
  static constexpr bool is_iec559 = std::numeric_limits<T>::is_iec559;
  static constexpr bool is_bounded = std::numeric_limits<T>::is_bounded;
  static constexpr bool is_modulo = std::numeric_limits<T>::is_modulo;

  static constexpr std::float_denorm_style has_denorm =
      std::numeric_limits<T>::has_denorm;
  static constexpr std::float_round_style round_style =
      std::numeric_limits<T>::round_style;

  static constexpr int digits = std::numeric_limits<T>::digits;
  static constexpr int digits10 = std::numeric_limits<T>::digits10;
  static constexpr int max_digits10 = std::numeric_limits<T>::max_digits10;
  static constexpr int radix = std::numeric_limits<T>::radix;
  static constexpr int min_exponent = std::numeric_limits<T>::min_exponent;
  static constexpr int min_exponent10 = std::numeric_limits<T>::max_exponent10;
  static constexpr int max_exponent = std::numeric_limits<T>::max_exponent;
  static constexpr int max_exponent10 = std::numeric_limits<T>::max_exponent10;
  static constexpr bool traps = std::numeric_limits<T>::traps;
  static constexpr bool tinyness_before =
      std::numeric_limits<T>::tinyness_before;

  static constexpr ceres::Jet<T, N> min
  CERES_PREVENT_MACRO_SUBSTITUTION() noexcept {
    return ceres::Jet<T, N>((std::numeric_limits<T>::min)());
  }
  static constexpr ceres::Jet<T, N> lowest() noexcept {
    return ceres::Jet<T, N>(std::numeric_limits<T>::lowest());
  }
  static constexpr ceres::Jet<T, N> epsilon() noexcept {
    return ceres::Jet<T, N>(std::numeric_limits<T>::epsilon());
  }
  static constexpr ceres::Jet<T, N> round_error() noexcept {
    return ceres::Jet<T, N>(std::numeric_limits<T>::round_error());
  }
  static constexpr ceres::Jet<T, N> infinity() noexcept {
    return ceres::Jet<T, N>(std::numeric_limits<T>::infinity());
  }
  static constexpr ceres::Jet<T, N> quiet_NaN() noexcept {
    return ceres::Jet<T, N>(std::numeric_limits<T>::quiet_NaN());
  }
  static constexpr ceres::Jet<T, N> signaling_NaN() noexcept {
    return ceres::Jet<T, N>(std::numeric_limits<T>::signaling_NaN());
  }
  static constexpr ceres::Jet<T, N> denorm_min() noexcept {
    return ceres::Jet<T, N>(std::numeric_limits<T>::denorm_min());
  }

  static constexpr ceres::Jet<T, N> max
  CERES_PREVENT_MACRO_SUBSTITUTION() noexcept {
    return ceres::Jet<T, N>((std::numeric_limits<T>::max)());
  }
};

}  // namespace std

namespace Eigen {

// Creating a specialization of NumTraits enables placing Jet objects inside
// Eigen arrays, getting all the goodness of Eigen combined with autodiff.
template <typename T, int N>
struct NumTraits<ceres::Jet<T, N>> {
  using Real = ceres::Jet<T, N>;
  using NonInteger = ceres::Jet<T, N>;
  using Nested = ceres::Jet<T, N>;
  using Literal = ceres::Jet<T, N>;

  static typename ceres::Jet<T, N> dummy_precision() {
    return ceres::Jet<T, N>(1e-12);
  }

  static inline Real epsilon() {
    return Real(std::numeric_limits<T>::epsilon());
  }

  static inline int digits10() { return NumTraits<T>::digits10(); }

  enum {
    IsComplex = 0,
    IsInteger = 0,
    IsSigned,
    ReadCost = 1,
    AddCost = 1,
    // For Jet types, multiplication is more expensive than addition.
    MulCost = 3,
    HasFloatingPoint = 1,
    RequireInitialization = 1
  };

  template <bool Vectorized>
  struct Div {
    enum {
#if defined(EIGEN_VECTORIZE_AVX)
      AVX = true,
#else
      AVX = false,
#endif

      // Assuming that for Jets, division is as expensive as
      // multiplication.
      Cost = 3
    };
  };

  static inline Real highest() { return Real((std::numeric_limits<T>::max)()); }
  static inline Real lowest() { return Real(-(std::numeric_limits<T>::max)()); }
};

// Specifying the return type of binary operations between Jets and scalar types
// allows you to perform matrix/array operations with Eigen matrices and arrays
// such as addition, subtraction, multiplication, and division where one Eigen
// matrix/array is of type Jet and the other is a scalar type. This improves
// performance by using the optimized scalar-to-Jet binary operations but
// is only available on Eigen versions >= 3.3
template <typename BinaryOp, typename T, int N>
struct ScalarBinaryOpTraits<ceres::Jet<T, N>, T, BinaryOp> {
  using ReturnType = ceres::Jet<T, N>;
};
template <typename BinaryOp, typename T, int N>
struct ScalarBinaryOpTraits<T, ceres::Jet<T, N>, BinaryOp> {
  using ReturnType = ceres::Jet<T, N>;
};

}  // namespace Eigen

#endif  // CERES_PUBLIC_JET_H_