Welcome to mirror list, hosted at ThFree Co, Russian Federation.

tiny_solver.h « ceres « include « ceres « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 47db5824dc5dbf5a46b44df609d4ac9bbcf3cf88 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2019 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
//   this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
//   this list of conditions and the following disclaimer in the documentation
//   and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
//   used to endorse or promote products derived from this software without
//   specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: mierle@gmail.com (Keir Mierle)
//
// WARNING WARNING WARNING
// WARNING WARNING WARNING  Tiny solver is experimental and will change.
// WARNING WARNING WARNING
//
// A tiny least squares solver using Levenberg-Marquardt, intended for solving
// small dense problems with low latency and low overhead. The implementation
// takes care to do all allocation up front, so that no memory is allocated
// during solving. This is especially useful when solving many similar problems;
// for example, inverse pixel distortion for every pixel on a grid.
//
// Note: This code has no dependencies beyond Eigen, including on other parts of
// Ceres, so it is possible to take this file alone and put it in another
// project without the rest of Ceres.
//
// Algorithm based off of:
//
// [1] K. Madsen, H. Nielsen, O. Tingleoff.
//     Methods for Non-linear Least Squares Problems.
//     http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/3215/pdf/imm3215.pdf

#ifndef CERES_PUBLIC_TINY_SOLVER_H_
#define CERES_PUBLIC_TINY_SOLVER_H_

#include <cassert>
#include <cmath>

#include "Eigen/Dense"

namespace ceres {

// To use tiny solver, create a class or struct that allows computing the cost
// function (described below). This is similar to a ceres::CostFunction, but is
// different to enable statically allocating all memory for the solver
// (specifically, enum sizes). Key parts are the Scalar typedef, the enums to
// describe problem sizes (needed to remove all heap allocations), and the
// operator() overload to evaluate the cost and (optionally) jacobians.
//
//   struct TinySolverCostFunctionTraits {
//     typedef double Scalar;
//     enum {
//       NUM_RESIDUALS = <int> OR Eigen::Dynamic,
//       NUM_PARAMETERS = <int> OR Eigen::Dynamic,
//     };
//     bool operator()(const double* parameters,
//                     double* residuals,
//                     double* jacobian) const;
//
//     int NumResiduals() const;  -- Needed if NUM_RESIDUALS == Eigen::Dynamic.
//     int NumParameters() const; -- Needed if NUM_PARAMETERS == Eigen::Dynamic.
//   };
//
// For operator(), the size of the objects is:
//
//   double* parameters -- NUM_PARAMETERS or NumParameters()
//   double* residuals  -- NUM_RESIDUALS or NumResiduals()
//   double* jacobian   -- NUM_RESIDUALS * NUM_PARAMETERS in column-major format
//                         (Eigen's default); or NULL if no jacobian requested.
//
// An example (fully statically sized):
//
//   struct MyCostFunctionExample {
//     typedef double Scalar;
//     enum {
//       NUM_RESIDUALS = 2,
//       NUM_PARAMETERS = 3,
//     };
//     bool operator()(const double* parameters,
//                     double* residuals,
//                     double* jacobian) const {
//       residuals[0] = x + 2*y + 4*z;
//       residuals[1] = y * z;
//       if (jacobian) {
//         jacobian[0 * 2 + 0] = 1;   // First column (x).
//         jacobian[0 * 2 + 1] = 0;
//
//         jacobian[1 * 2 + 0] = 2;   // Second column (y).
//         jacobian[1 * 2 + 1] = z;
//
//         jacobian[2 * 2 + 0] = 4;   // Third column (z).
//         jacobian[2 * 2 + 1] = y;
//       }
//       return true;
//     }
//   };
//
// The solver supports either statically or dynamically sized cost
// functions. If the number of residuals is dynamic then the Function
// must define:
//
//   int NumResiduals() const;
//
// If the number of parameters is dynamic then the Function must
// define:
//
//   int NumParameters() const;
//
template <typename Function,
          typename LinearSolver =
              Eigen::LDLT<Eigen::Matrix<typename Function::Scalar,
                                        Function::NUM_PARAMETERS,
                                        Function::NUM_PARAMETERS>>>
class TinySolver {
 public:
  // This class needs to have an Eigen aligned operator new as it contains
  // fixed-size Eigen types.
  EIGEN_MAKE_ALIGNED_OPERATOR_NEW

  enum {
    NUM_RESIDUALS = Function::NUM_RESIDUALS,
    NUM_PARAMETERS = Function::NUM_PARAMETERS
  };
  typedef typename Function::Scalar Scalar;
  typedef typename Eigen::Matrix<Scalar, NUM_PARAMETERS, 1> Parameters;

  enum Status {
    GRADIENT_TOO_SMALL,            // eps > max(J'*f(x))
    RELATIVE_STEP_SIZE_TOO_SMALL,  // eps > ||dx|| / (||x|| + eps)
    COST_TOO_SMALL,                // eps > ||f(x)||^2 / 2
    HIT_MAX_ITERATIONS,

    // TODO(sameeragarwal): Deal with numerical failures.
  };

  struct Options {
    Scalar gradient_tolerance = 1e-10;  // eps > max(J'*f(x))
    Scalar parameter_tolerance = 1e-8;  // eps > ||dx|| / ||x||
    Scalar cost_threshold =             // eps > ||f(x)||
        std::numeric_limits<Scalar>::epsilon();
    Scalar initial_trust_region_radius = 1e4;
    int max_num_iterations = 50;
  };

  struct Summary {
    Scalar initial_cost = -1;       // 1/2 ||f(x)||^2
    Scalar final_cost = -1;         // 1/2 ||f(x)||^2
    Scalar gradient_max_norm = -1;  // max(J'f(x))
    int iterations = -1;
    Status status = HIT_MAX_ITERATIONS;
  };

  bool Update(const Function& function, const Parameters& x) {
    if (!function(x.data(), error_.data(), jacobian_.data())) {
      return false;
    }

    error_ = -error_;

    // On the first iteration, compute a diagonal (Jacobi) scaling
    // matrix, which we store as a vector.
    if (summary.iterations == 0) {
      // jacobi_scaling = 1 / (1 + diagonal(J'J))
      //
      // 1 is added to the denominator to regularize small diagonal
      // entries.
      jacobi_scaling_ = 1.0 / (1.0 + jacobian_.colwise().norm().array());
    }

    // This explicitly computes the normal equations, which is numerically
    // unstable. Nevertheless, it is often good enough and is fast.
    //
    // TODO(sameeragarwal): Refactor this to allow for DenseQR
    // factorization.
    jacobian_ = jacobian_ * jacobi_scaling_.asDiagonal();
    jtj_ = jacobian_.transpose() * jacobian_;
    g_ = jacobian_.transpose() * error_;
    summary.gradient_max_norm = g_.array().abs().maxCoeff();
    cost_ = error_.squaredNorm() / 2;
    return true;
  }

  const Summary& Solve(const Function& function, Parameters* x_and_min) {
    Initialize<NUM_RESIDUALS, NUM_PARAMETERS>(function);
    assert(x_and_min);
    Parameters& x = *x_and_min;
    summary = Summary();
    summary.iterations = 0;

    // TODO(sameeragarwal): Deal with failure here.
    Update(function, x);
    summary.initial_cost = cost_;
    summary.final_cost = cost_;

    if (summary.gradient_max_norm < options.gradient_tolerance) {
      summary.status = GRADIENT_TOO_SMALL;
      return summary;
    }

    if (cost_ < options.cost_threshold) {
      summary.status = COST_TOO_SMALL;
      return summary;
    }

    Scalar u = 1.0 / options.initial_trust_region_radius;
    Scalar v = 2;

    for (summary.iterations = 1;
         summary.iterations < options.max_num_iterations;
         summary.iterations++) {
      jtj_regularized_ = jtj_;
      const Scalar min_diagonal = 1e-6;
      const Scalar max_diagonal = 1e32;
      for (int i = 0; i < lm_diagonal_.rows(); ++i) {
        lm_diagonal_[i] = std::sqrt(
            u * std::min(std::max(jtj_(i, i), min_diagonal), max_diagonal));
        jtj_regularized_(i, i) += lm_diagonal_[i] * lm_diagonal_[i];
      }

      // TODO(sameeragarwal): Check for failure and deal with it.
      linear_solver_.compute(jtj_regularized_);
      lm_step_ = linear_solver_.solve(g_);
      dx_ = jacobi_scaling_.asDiagonal() * lm_step_;

      // Adding parameter_tolerance to x.norm() ensures that this
      // works if x is near zero.
      const Scalar parameter_tolerance =
          options.parameter_tolerance *
          (x.norm() + options.parameter_tolerance);
      if (dx_.norm() < parameter_tolerance) {
        summary.status = RELATIVE_STEP_SIZE_TOO_SMALL;
        break;
      }
      x_new_ = x + dx_;

      // TODO(keir): Add proper handling of errors from user eval of cost
      // functions.
      function(&x_new_[0], &f_x_new_[0], NULL);

      const Scalar cost_change = (2 * cost_ - f_x_new_.squaredNorm());

      // TODO(sameeragarwal): Better more numerically stable evaluation.
      const Scalar model_cost_change = lm_step_.dot(2 * g_ - jtj_ * lm_step_);

      // rho is the ratio of the actual reduction in error to the reduction
      // in error that would be obtained if the problem was linear. See [1]
      // for details.
      Scalar rho(cost_change / model_cost_change);
      if (rho > 0) {
        // Accept the Levenberg-Marquardt step because the linear
        // model fits well.
        x = x_new_;

        // TODO(sameeragarwal): Deal with failure.
        Update(function, x);
        if (summary.gradient_max_norm < options.gradient_tolerance) {
          summary.status = GRADIENT_TOO_SMALL;
          break;
        }

        if (cost_ < options.cost_threshold) {
          summary.status = COST_TOO_SMALL;
          break;
        }

        Scalar tmp = Scalar(2 * rho - 1);
        u = u * std::max(1 / 3., 1 - tmp * tmp * tmp);
        v = 2;
        continue;
      }

      // Reject the update because either the normal equations failed to solve
      // or the local linear model was not good (rho < 0). Instead, increase u
      // to move closer to gradient descent.
      u *= v;
      v *= 2;
    }

    summary.final_cost = cost_;
    return summary;
  }

  Options options;
  Summary summary;

 private:
  // Preallocate everything, including temporary storage needed for solving the
  // linear system. This allows reusing the intermediate storage across solves.
  LinearSolver linear_solver_;
  Scalar cost_;
  Parameters dx_, x_new_, g_, jacobi_scaling_, lm_diagonal_, lm_step_;
  Eigen::Matrix<Scalar, NUM_RESIDUALS, 1> error_, f_x_new_;
  Eigen::Matrix<Scalar, NUM_RESIDUALS, NUM_PARAMETERS> jacobian_;
  Eigen::Matrix<Scalar, NUM_PARAMETERS, NUM_PARAMETERS> jtj_, jtj_regularized_;

  // The following definitions are needed for template metaprogramming.
  template <bool Condition, typename T>
  struct enable_if;

  template <typename T>
  struct enable_if<true, T> {
    typedef T type;
  };

  // The number of parameters and residuals are dynamically sized.
  template <int R, int P>
  typename enable_if<(R == Eigen::Dynamic && P == Eigen::Dynamic), void>::type
  Initialize(const Function& function) {
    Initialize(function.NumResiduals(), function.NumParameters());
  }

  // The number of parameters is dynamically sized and the number of
  // residuals is statically sized.
  template <int R, int P>
  typename enable_if<(R == Eigen::Dynamic && P != Eigen::Dynamic), void>::type
  Initialize(const Function& function) {
    Initialize(function.NumResiduals(), P);
  }

  // The number of parameters is statically sized and the number of
  // residuals is dynamically sized.
  template <int R, int P>
  typename enable_if<(R != Eigen::Dynamic && P == Eigen::Dynamic), void>::type
  Initialize(const Function& function) {
    Initialize(R, function.NumParameters());
  }

  // The number of parameters and residuals are statically sized.
  template <int R, int P>
  typename enable_if<(R != Eigen::Dynamic && P != Eigen::Dynamic), void>::type
  Initialize(const Function& /* function */) {}

  void Initialize(int num_residuals, int num_parameters) {
    dx_.resize(num_parameters);
    x_new_.resize(num_parameters);
    g_.resize(num_parameters);
    jacobi_scaling_.resize(num_parameters);
    lm_diagonal_.resize(num_parameters);
    lm_step_.resize(num_parameters);
    error_.resize(num_residuals);
    f_x_new_.resize(num_residuals);
    jacobian_.resize(num_residuals, num_parameters);
    jtj_.resize(num_parameters, num_parameters);
    jtj_regularized_.resize(num_parameters, num_parameters);
  }
};

}  // namespace ceres

#endif  // CERES_PUBLIC_TINY_SOLVER_H_