Welcome to mirror list, hosted at ThFree Co, Russian Federation.

cxsparse.h « ceres « internal « ceres « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: dc4740ceaee38d204ff5c8d2c5d4f7c5fe7f6a84 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2015 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
//   this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
//   this list of conditions and the following disclaimer in the documentation
//   and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
//   used to endorse or promote products derived from this software without
//   specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: strandmark@google.com (Petter Strandmark)

#ifndef CERES_INTERNAL_CXSPARSE_H_
#define CERES_INTERNAL_CXSPARSE_H_

// This include must come before any #ifndef check on Ceres compile options.
#include "ceres/internal/port.h"

#ifndef CERES_NO_CXSPARSE

#include <memory>
#include <string>
#include <vector>

#include "ceres/linear_solver.h"
#include "ceres/sparse_cholesky.h"
#include "cs.h"

namespace ceres {
namespace internal {

class CompressedRowSparseMatrix;
class TripletSparseMatrix;

// This object provides access to solving linear systems using Cholesky
// factorization with a known symbolic factorization. This features does not
// explicitly exist in CXSparse. The methods in the class are nonstatic because
// the class manages internal scratch space.
class CXSparse {
 public:
  CXSparse();
  ~CXSparse();

  // Solve the system lhs * solution = rhs in place by using an
  // approximate minimum degree fill reducing ordering.
  bool SolveCholesky(cs_di* lhs, double* rhs_and_solution);

  // Solves a linear system given its symbolic and numeric factorization.
  void Solve(cs_dis* symbolic_factor,
             csn* numeric_factor,
             double* rhs_and_solution);

  // Compute the numeric Cholesky factorization of A, given its
  // symbolic factorization.
  //
  // Caller owns the result.
  csn* Cholesky(cs_di* A, cs_dis* symbolic_factor);

  // Creates a sparse matrix from a compressed-column form. No memory is
  // allocated or copied; the structure A is filled out with info from the
  // argument.
  cs_di CreateSparseMatrixTransposeView(CompressedRowSparseMatrix* A);

  // Creates a new matrix from a triplet form. Deallocate the returned matrix
  // with Free. May return NULL if the compression or allocation fails.
  cs_di* CreateSparseMatrix(TripletSparseMatrix* A);

  // B = A'
  //
  // The returned matrix should be deallocated with Free when not used
  // anymore.
  cs_di* TransposeMatrix(cs_di* A);

  // C = A * B
  //
  // The returned matrix should be deallocated with Free when not used
  // anymore.
  cs_di* MatrixMatrixMultiply(cs_di* A, cs_di* B);

  // Computes a symbolic factorization of A that can be used in SolveCholesky.
  //
  // The returned matrix should be deallocated with Free when not used anymore.
  cs_dis* AnalyzeCholesky(cs_di* A);

  // Computes a symbolic factorization of A that can be used in
  // SolveCholesky, but does not compute a fill-reducing ordering.
  //
  // The returned matrix should be deallocated with Free when not used anymore.
  cs_dis* AnalyzeCholeskyWithNaturalOrdering(cs_di* A);

  // Computes a symbolic factorization of A that can be used in
  // SolveCholesky. The difference from AnalyzeCholesky is that this
  // function first detects the block sparsity of the matrix using
  // information about the row and column blocks and uses this block
  // sparse matrix to find a fill-reducing ordering. This ordering is
  // then used to find a symbolic factorization. This can result in a
  // significant performance improvement AnalyzeCholesky on block
  // sparse matrices.
  //
  // The returned matrix should be deallocated with Free when not used
  // anymore.
  cs_dis* BlockAnalyzeCholesky(cs_di* A,
                               const std::vector<int>& row_blocks,
                               const std::vector<int>& col_blocks);

  // Compute an fill-reducing approximate minimum degree ordering of
  // the matrix A. ordering should be non-NULL and should point to
  // enough memory to hold the ordering for the rows of A.
  void ApproximateMinimumDegreeOrdering(cs_di* A, int* ordering);

  void Free(cs_di* sparse_matrix);
  void Free(cs_dis* symbolic_factorization);
  void Free(csn* numeric_factorization);

 private:
  // Cached scratch space
  CS_ENTRY* scratch_;
  int scratch_size_;
};

// An implementation of SparseCholesky interface using the CXSparse
// library.
class CXSparseCholesky : public SparseCholesky {
 public:
  // Factory
  static std::unique_ptr<SparseCholesky> Create(OrderingType ordering_type);

  // SparseCholesky interface.
  virtual ~CXSparseCholesky();
  CompressedRowSparseMatrix::StorageType StorageType() const final;
  LinearSolverTerminationType Factorize(CompressedRowSparseMatrix* lhs,
                                        std::string* message) final;
  LinearSolverTerminationType Solve(const double* rhs,
                                    double* solution,
                                    std::string* message) final;

 private:
  CXSparseCholesky(const OrderingType ordering_type);
  void FreeSymbolicFactorization();
  void FreeNumericFactorization();

  const OrderingType ordering_type_;
  CXSparse cs_;
  cs_dis* symbolic_factor_;
  csn* numeric_factor_;
};

}  // namespace internal
}  // namespace ceres

#else   // CERES_NO_CXSPARSE

typedef void cs_dis;

class CXSparse {
 public:
  void Free(void* arg) {}
};
#endif  // CERES_NO_CXSPARSE

#endif  // CERES_INTERNAL_CXSPARSE_H_