Welcome to mirror list, hosted at ThFree Co, Russian Federation.

dogleg_strategy.cc « ceres « internal « ceres « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: ecc6b882338097af0b764b7afc69804f80da9cbe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2015 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
//   this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
//   this list of conditions and the following disclaimer in the documentation
//   and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
//   used to endorse or promote products derived from this software without
//   specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)

#include "ceres/dogleg_strategy.h"

#include <algorithm>
#include <cmath>

#include "Eigen/Dense"
#include "ceres/array_utils.h"
#include "ceres/internal/eigen.h"
#include "ceres/linear_least_squares_problems.h"
#include "ceres/linear_solver.h"
#include "ceres/polynomial.h"
#include "ceres/sparse_matrix.h"
#include "ceres/trust_region_strategy.h"
#include "ceres/types.h"
#include "glog/logging.h"

namespace ceres {
namespace internal {
namespace {
const double kMaxMu = 1.0;
const double kMinMu = 1e-8;
}

DoglegStrategy::DoglegStrategy(const TrustRegionStrategy::Options& options)
    : linear_solver_(options.linear_solver),
      radius_(options.initial_radius),
      max_radius_(options.max_radius),
      min_diagonal_(options.min_lm_diagonal),
      max_diagonal_(options.max_lm_diagonal),
      mu_(kMinMu),
      min_mu_(kMinMu),
      max_mu_(kMaxMu),
      mu_increase_factor_(10.0),
      increase_threshold_(0.75),
      decrease_threshold_(0.25),
      dogleg_step_norm_(0.0),
      reuse_(false),
      dogleg_type_(options.dogleg_type) {
  CHECK(linear_solver_ != nullptr);
  CHECK_GT(min_diagonal_, 0.0);
  CHECK_LE(min_diagonal_, max_diagonal_);
  CHECK_GT(max_radius_, 0.0);
}

// If the reuse_ flag is not set, then the Cauchy point (scaled
// gradient) and the new Gauss-Newton step are computed from
// scratch. The Dogleg step is then computed as interpolation of these
// two vectors.
TrustRegionStrategy::Summary DoglegStrategy::ComputeStep(
    const TrustRegionStrategy::PerSolveOptions& per_solve_options,
    SparseMatrix* jacobian,
    const double* residuals,
    double* step) {
  CHECK(jacobian != nullptr);
  CHECK(residuals != nullptr);
  CHECK(step != nullptr);

  const int n = jacobian->num_cols();
  if (reuse_) {
    // Gauss-Newton and gradient vectors are always available, only a
    // new interpolant need to be computed. For the subspace case,
    // the subspace and the two-dimensional model are also still valid.
    switch (dogleg_type_) {
      case TRADITIONAL_DOGLEG:
        ComputeTraditionalDoglegStep(step);
        break;

      case SUBSPACE_DOGLEG:
        ComputeSubspaceDoglegStep(step);
        break;
    }
    TrustRegionStrategy::Summary summary;
    summary.num_iterations = 0;
    summary.termination_type = LINEAR_SOLVER_SUCCESS;
    return summary;
  }

  reuse_ = true;
  // Check that we have the storage needed to hold the various
  // temporary vectors.
  if (diagonal_.rows() != n) {
    diagonal_.resize(n, 1);
    gradient_.resize(n, 1);
    gauss_newton_step_.resize(n, 1);
  }

  // Vector used to form the diagonal matrix that is used to
  // regularize the Gauss-Newton solve and that defines the
  // elliptical trust region
  //
  //   || D * step || <= radius_ .
  //
  jacobian->SquaredColumnNorm(diagonal_.data());
  for (int i = 0; i < n; ++i) {
    diagonal_[i] = std::min(std::max(diagonal_[i], min_diagonal_),
                            max_diagonal_);
  }
  diagonal_ = diagonal_.array().sqrt();

  ComputeGradient(jacobian, residuals);
  ComputeCauchyPoint(jacobian);

  LinearSolver::Summary linear_solver_summary =
      ComputeGaussNewtonStep(per_solve_options, jacobian, residuals);

  TrustRegionStrategy::Summary summary;
  summary.residual_norm = linear_solver_summary.residual_norm;
  summary.num_iterations = linear_solver_summary.num_iterations;
  summary.termination_type = linear_solver_summary.termination_type;

  if (linear_solver_summary.termination_type == LINEAR_SOLVER_FATAL_ERROR) {
    return summary;
  }

  if (linear_solver_summary.termination_type != LINEAR_SOLVER_FAILURE) {
    switch (dogleg_type_) {
      // Interpolate the Cauchy point and the Gauss-Newton step.
      case TRADITIONAL_DOGLEG:
        ComputeTraditionalDoglegStep(step);
        break;

      // Find the minimum in the subspace defined by the
      // Cauchy point and the (Gauss-)Newton step.
      case SUBSPACE_DOGLEG:
        if (!ComputeSubspaceModel(jacobian)) {
          summary.termination_type = LINEAR_SOLVER_FAILURE;
          break;
        }
        ComputeSubspaceDoglegStep(step);
        break;
    }
  }

  return summary;
}

// The trust region is assumed to be elliptical with the
// diagonal scaling matrix D defined by sqrt(diagonal_).
// It is implemented by substituting step' = D * step.
// The trust region for step' is spherical.
// The gradient, the Gauss-Newton step, the Cauchy point,
// and all calculations involving the Jacobian have to
// be adjusted accordingly.
void DoglegStrategy::ComputeGradient(
    SparseMatrix* jacobian,
    const double* residuals) {
  gradient_.setZero();
  jacobian->LeftMultiply(residuals, gradient_.data());
  gradient_.array() /= diagonal_.array();
}

// The Cauchy point is the global minimizer of the quadratic model
// along the one-dimensional subspace spanned by the gradient.
void DoglegStrategy::ComputeCauchyPoint(SparseMatrix* jacobian) {
  // alpha * -gradient is the Cauchy point.
  Vector Jg(jacobian->num_rows());
  Jg.setZero();
  // The Jacobian is scaled implicitly by computing J * (D^-1 * (D^-1 * g))
  // instead of (J * D^-1) * (D^-1 * g).
  Vector scaled_gradient =
      (gradient_.array() / diagonal_.array()).matrix();
  jacobian->RightMultiply(scaled_gradient.data(), Jg.data());
  alpha_ = gradient_.squaredNorm() / Jg.squaredNorm();
}

// The dogleg step is defined as the intersection of the trust region
// boundary with the piecewise linear path from the origin to the Cauchy
// point and then from there to the Gauss-Newton point (global minimizer
// of the model function). The Gauss-Newton point is taken if it lies
// within the trust region.
void DoglegStrategy::ComputeTraditionalDoglegStep(double* dogleg) {
  VectorRef dogleg_step(dogleg, gradient_.rows());

  // Case 1. The Gauss-Newton step lies inside the trust region, and
  // is therefore the optimal solution to the trust-region problem.
  const double gradient_norm = gradient_.norm();
  const double gauss_newton_norm = gauss_newton_step_.norm();
  if (gauss_newton_norm <= radius_) {
    dogleg_step = gauss_newton_step_;
    dogleg_step_norm_ = gauss_newton_norm;
    dogleg_step.array() /= diagonal_.array();
    VLOG(3) << "GaussNewton step size: " << dogleg_step_norm_
            << " radius: " << radius_;
    return;
  }

  // Case 2. The Cauchy point and the Gauss-Newton steps lie outside
  // the trust region. Rescale the Cauchy point to the trust region
  // and return.
  if  (gradient_norm * alpha_ >= radius_) {
    dogleg_step = -(radius_ / gradient_norm) * gradient_;
    dogleg_step_norm_ = radius_;
    dogleg_step.array() /= diagonal_.array();
    VLOG(3) << "Cauchy step size: " << dogleg_step_norm_
            << " radius: " << radius_;
    return;
  }

  // Case 3. The Cauchy point is inside the trust region and the
  // Gauss-Newton step is outside. Compute the line joining the two
  // points and the point on it which intersects the trust region
  // boundary.

  // a = alpha * -gradient
  // b = gauss_newton_step
  const double b_dot_a = -alpha_ * gradient_.dot(gauss_newton_step_);
  const double a_squared_norm = pow(alpha_ * gradient_norm, 2.0);
  const double b_minus_a_squared_norm =
      a_squared_norm - 2 * b_dot_a + pow(gauss_newton_norm, 2);

  // c = a' (b - a)
  //   = alpha * -gradient' gauss_newton_step - alpha^2 |gradient|^2
  const double c = b_dot_a - a_squared_norm;
  const double d = sqrt(c * c + b_minus_a_squared_norm *
                        (pow(radius_, 2.0) - a_squared_norm));

  double beta =
      (c <= 0)
      ? (d - c) /  b_minus_a_squared_norm
      : (radius_ * radius_ - a_squared_norm) / (d + c);
  dogleg_step = (-alpha_ * (1.0 - beta)) * gradient_
      + beta * gauss_newton_step_;
  dogleg_step_norm_ = dogleg_step.norm();
  dogleg_step.array() /= diagonal_.array();
  VLOG(3) << "Dogleg step size: " << dogleg_step_norm_
          << " radius: " << radius_;
}

// The subspace method finds the minimum of the two-dimensional problem
//
//   min. 1/2 x' B' H B x + g' B x
//   s.t. || B x ||^2 <= r^2
//
// where r is the trust region radius and B is the matrix with unit columns
// spanning the subspace defined by the steepest descent and Newton direction.
// This subspace by definition includes the Gauss-Newton point, which is
// therefore taken if it lies within the trust region.
void DoglegStrategy::ComputeSubspaceDoglegStep(double* dogleg) {
  VectorRef dogleg_step(dogleg, gradient_.rows());

  // The Gauss-Newton point is inside the trust region if |GN| <= radius_.
  // This test is valid even though radius_ is a length in the two-dimensional
  // subspace while gauss_newton_step_ is expressed in the (scaled)
  // higher dimensional original space. This is because
  //
  //   1. gauss_newton_step_ by definition lies in the subspace, and
  //   2. the subspace basis is orthonormal.
  //
  // As a consequence, the norm of the gauss_newton_step_ in the subspace is
  // the same as its norm in the original space.
  const double gauss_newton_norm = gauss_newton_step_.norm();
  if (gauss_newton_norm <= radius_) {
    dogleg_step = gauss_newton_step_;
    dogleg_step_norm_ = gauss_newton_norm;
    dogleg_step.array() /= diagonal_.array();
    VLOG(3) << "GaussNewton step size: " << dogleg_step_norm_
            << " radius: " << radius_;
    return;
  }

  // The optimum lies on the boundary of the trust region. The above problem
  // therefore becomes
  //
  //   min. 1/2 x^T B^T H B x + g^T B x
  //   s.t. || B x ||^2 = r^2
  //
  // Notice the equality in the constraint.
  //
  // This can be solved by forming the Lagrangian, solving for x(y), where
  // y is the Lagrange multiplier, using the gradient of the objective, and
  // putting x(y) back into the constraint. This results in a fourth order
  // polynomial in y, which can be solved using e.g. the companion matrix.
  // See the description of MakePolynomialForBoundaryConstrainedProblem for
  // details. The result is up to four real roots y*, not all of which
  // correspond to feasible points. The feasible points x(y*) have to be
  // tested for optimality.

  if (subspace_is_one_dimensional_) {
    // The subspace is one-dimensional, so both the gradient and
    // the Gauss-Newton step point towards the same direction.
    // In this case, we move along the gradient until we reach the trust
    // region boundary.
    dogleg_step = -(radius_ / gradient_.norm()) * gradient_;
    dogleg_step_norm_ = radius_;
    dogleg_step.array() /= diagonal_.array();
    VLOG(3) << "Dogleg subspace step size (1D): " << dogleg_step_norm_
            << " radius: " << radius_;
    return;
  }

  Vector2d minimum(0.0, 0.0);
  if (!FindMinimumOnTrustRegionBoundary(&minimum)) {
    // For the positive semi-definite case, a traditional dogleg step
    // is taken in this case.
    LOG(WARNING) << "Failed to compute polynomial roots. "
                 << "Taking traditional dogleg step instead.";
    ComputeTraditionalDoglegStep(dogleg);
    return;
  }

  // Test first order optimality at the minimum.
  // The first order KKT conditions state that the minimum x*
  // has to satisfy either || x* ||^2 < r^2 (i.e. has to lie within
  // the trust region), or
  //
  //   (B x* + g) + y x* = 0
  //
  // for some positive scalar y.
  // Here, as it is already known that the minimum lies on the boundary, the
  // latter condition is tested. To allow for small imprecisions, we test if
  // the angle between (B x* + g) and -x* is smaller than acos(0.99).
  // The exact value of the cosine is arbitrary but should be close to 1.
  //
  // This condition should not be violated. If it is, the minimum was not
  // correctly determined.
  const double kCosineThreshold = 0.99;
  const Vector2d grad_minimum = subspace_B_ * minimum + subspace_g_;
  const double cosine_angle = -minimum.dot(grad_minimum) /
      (minimum.norm() * grad_minimum.norm());
  if (cosine_angle < kCosineThreshold) {
    LOG(WARNING) << "First order optimality seems to be violated "
                 << "in the subspace method!\n"
                 << "Cosine of angle between x and B x + g is "
                 << cosine_angle << ".\n"
                 << "Taking a regular dogleg step instead.\n"
                 << "Please consider filing a bug report if this "
                 << "happens frequently or consistently.\n";
    ComputeTraditionalDoglegStep(dogleg);
    return;
  }

  // Create the full step from the optimal 2d solution.
  dogleg_step = subspace_basis_ * minimum;
  dogleg_step_norm_ = radius_;
  dogleg_step.array() /= diagonal_.array();
  VLOG(3) << "Dogleg subspace step size: " << dogleg_step_norm_
          << " radius: " << radius_;
}

// Build the polynomial that defines the optimal Lagrange multipliers.
// Let the Lagrangian be
//
//   L(x, y) = 0.5 x^T B x + x^T g + y (0.5 x^T x - 0.5 r^2).       (1)
//
// Stationary points of the Lagrangian are given by
//
//   0 = d L(x, y) / dx = Bx + g + y x                              (2)
//   0 = d L(x, y) / dy = 0.5 x^T x - 0.5 r^2                       (3)
//
// For any given y, we can solve (2) for x as
//
//   x(y) = -(B + y I)^-1 g .                                       (4)
//
// As B + y I is 2x2, we form the inverse explicitly:
//
//   (B + y I)^-1 = (1 / det(B + y I)) adj(B + y I)                 (5)
//
// where adj() denotes adjugation. This should be safe, as B is positive
// semi-definite and y is necessarily positive, so (B + y I) is indeed
// invertible.
// Plugging (5) into (4) and the result into (3), then dividing by 0.5 we
// obtain
//
//   0 = (1 / det(B + y I))^2 g^T adj(B + y I)^T adj(B + y I) g - r^2
//                                                                  (6)
//
// or
//
//   det(B + y I)^2 r^2 = g^T adj(B + y I)^T adj(B + y I) g         (7a)
//                      = g^T adj(B)^T adj(B) g
//                           + 2 y g^T adj(B)^T g + y^2 g^T g       (7b)
//
// as
//
//   adj(B + y I) = adj(B) + y I = adj(B)^T + y I .                 (8)
//
// The left hand side can be expressed explicitly using
//
//   det(B + y I) = det(B) + y tr(B) + y^2 .                        (9)
//
// So (7) is a polynomial in y of degree four.
// Bringing everything back to the left hand side, the coefficients can
// be read off as
//
//     y^4  r^2
//   + y^3  2 r^2 tr(B)
//   + y^2 (r^2 tr(B)^2 + 2 r^2 det(B) - g^T g)
//   + y^1 (2 r^2 det(B) tr(B) - 2 g^T adj(B)^T g)
//   + y^0 (r^2 det(B)^2 - g^T adj(B)^T adj(B) g)
//
Vector DoglegStrategy::MakePolynomialForBoundaryConstrainedProblem() const {
  const double detB = subspace_B_.determinant();
  const double trB = subspace_B_.trace();
  const double r2 = radius_ * radius_;
  Matrix2d B_adj;
  B_adj <<  subspace_B_(1, 1) , -subspace_B_(0, 1),
            -subspace_B_(1, 0) ,  subspace_B_(0, 0);

  Vector polynomial(5);
  polynomial(0) = r2;
  polynomial(1) = 2.0 * r2 * trB;
  polynomial(2) = r2 * (trB * trB + 2.0 * detB) - subspace_g_.squaredNorm();
  polynomial(3) = -2.0 * (subspace_g_.transpose() * B_adj * subspace_g_
      - r2 * detB * trB);
  polynomial(4) = r2 * detB * detB - (B_adj * subspace_g_).squaredNorm();

  return polynomial;
}

// Given a Lagrange multiplier y that corresponds to a stationary point
// of the Lagrangian L(x, y), compute the corresponding x from the
// equation
//
//   0 = d L(x, y) / dx
//     = B * x + g + y * x
//     = (B + y * I) * x + g
//
DoglegStrategy::Vector2d DoglegStrategy::ComputeSubspaceStepFromRoot(
    double y) const {
  const Matrix2d B_i = subspace_B_ + y * Matrix2d::Identity();
  return -B_i.partialPivLu().solve(subspace_g_);
}

// This function evaluates the quadratic model at a point x in the
// subspace spanned by subspace_basis_.
double DoglegStrategy::EvaluateSubspaceModel(const Vector2d& x) const {
  return 0.5 * x.dot(subspace_B_ * x) + subspace_g_.dot(x);
}

// This function attempts to solve the boundary-constrained subspace problem
//
//   min. 1/2 x^T B^T H B x + g^T B x
//   s.t. || B x ||^2 = r^2
//
// where B is an orthonormal subspace basis and r is the trust-region radius.
//
// This is done by finding the roots of a fourth degree polynomial. If the
// root finding fails, the function returns false and minimum will be set
// to (0, 0). If it succeeds, true is returned.
//
// In the failure case, another step should be taken, such as the traditional
// dogleg step.
bool DoglegStrategy::FindMinimumOnTrustRegionBoundary(Vector2d* minimum) const {
  CHECK(minimum != nullptr);

  // Return (0, 0) in all error cases.
  minimum->setZero();

  // Create the fourth-degree polynomial that is a necessary condition for
  // optimality.
  const Vector polynomial = MakePolynomialForBoundaryConstrainedProblem();

  // Find the real parts y_i of its roots (not only the real roots).
  Vector roots_real;
  if (!FindPolynomialRoots(polynomial, &roots_real, NULL)) {
    // Failed to find the roots of the polynomial, i.e. the candidate
    // solutions of the constrained problem. Report this back to the caller.
    return false;
  }

  // For each root y, compute B x(y) and check for feasibility.
  // Notice that there should always be four roots, as the leading term of
  // the polynomial is r^2 and therefore non-zero. However, as some roots
  // may be complex, the real parts are not necessarily unique.
  double minimum_value = std::numeric_limits<double>::max();
  bool valid_root_found = false;
  for (int i = 0; i < roots_real.size(); ++i) {
    const Vector2d x_i = ComputeSubspaceStepFromRoot(roots_real(i));

    // Not all roots correspond to points on the trust region boundary.
    // There are at most four candidate solutions. As we are interested
    // in the minimum, it is safe to consider all of them after projecting
    // them onto the trust region boundary.
    if (x_i.norm() > 0) {
      const double f_i = EvaluateSubspaceModel((radius_ / x_i.norm()) * x_i);
      valid_root_found = true;
      if (f_i < minimum_value) {
        minimum_value = f_i;
        *minimum = x_i;
      }
    }
  }

  return valid_root_found;
}

LinearSolver::Summary DoglegStrategy::ComputeGaussNewtonStep(
    const PerSolveOptions& per_solve_options,
    SparseMatrix* jacobian,
    const double* residuals) {
  const int n = jacobian->num_cols();
  LinearSolver::Summary linear_solver_summary;
  linear_solver_summary.termination_type = LINEAR_SOLVER_FAILURE;

  // The Jacobian matrix is often quite poorly conditioned. Thus it is
  // necessary to add a diagonal matrix at the bottom to prevent the
  // linear solver from failing.
  //
  // We do this by computing the same diagonal matrix as the one used
  // by Levenberg-Marquardt (other choices are possible), and scaling
  // it by a small constant (independent of the trust region radius).
  //
  // If the solve fails, the multiplier to the diagonal is increased
  // up to max_mu_ by a factor of mu_increase_factor_ every time. If
  // the linear solver is still not successful, the strategy returns
  // with LINEAR_SOLVER_FAILURE.
  //
  // Next time when a new Gauss-Newton step is requested, the
  // multiplier starts out from the last successful solve.
  //
  // When a step is declared successful, the multiplier is decreased
  // by half of mu_increase_factor_.

  while (mu_ < max_mu_) {
    // Dogleg, as far as I (sameeragarwal) understand it, requires a
    // reasonably good estimate of the Gauss-Newton step. This means
    // that we need to solve the normal equations more or less
    // exactly. This is reflected in the values of the tolerances set
    // below.
    //
    // For now, this strategy should only be used with exact
    // factorization based solvers, for which these tolerances are
    // automatically satisfied.
    //
    // The right way to combine inexact solves with trust region
    // methods is to use Stiehaug's method.
    LinearSolver::PerSolveOptions solve_options;
    solve_options.q_tolerance = 0.0;
    solve_options.r_tolerance = 0.0;

    lm_diagonal_ = diagonal_ * std::sqrt(mu_);
    solve_options.D = lm_diagonal_.data();

    // As in the LevenbergMarquardtStrategy, solve Jy = r instead
    // of Jx = -r and later set x = -y to avoid having to modify
    // either jacobian or residuals.
    InvalidateArray(n, gauss_newton_step_.data());
    linear_solver_summary = linear_solver_->Solve(jacobian,
                                                  residuals,
                                                  solve_options,
                                                  gauss_newton_step_.data());

    if (per_solve_options.dump_format_type == CONSOLE ||
        (per_solve_options.dump_format_type != CONSOLE &&
         !per_solve_options.dump_filename_base.empty())) {
      if (!DumpLinearLeastSquaresProblem(per_solve_options.dump_filename_base,
                                         per_solve_options.dump_format_type,
                                         jacobian,
                                         solve_options.D,
                                         residuals,
                                         gauss_newton_step_.data(),
                                         0)) {
        LOG(ERROR) << "Unable to dump trust region problem."
                   << " Filename base: "
                   << per_solve_options.dump_filename_base;
      }
    }

    if (linear_solver_summary.termination_type == LINEAR_SOLVER_FATAL_ERROR) {
      return linear_solver_summary;
    }

    if (linear_solver_summary.termination_type == LINEAR_SOLVER_FAILURE ||
        !IsArrayValid(n, gauss_newton_step_.data())) {
      mu_ *= mu_increase_factor_;
      VLOG(2) << "Increasing mu " << mu_;
      linear_solver_summary.termination_type = LINEAR_SOLVER_FAILURE;
      continue;
    }
    break;
  }

  if (linear_solver_summary.termination_type != LINEAR_SOLVER_FAILURE) {
    // The scaled Gauss-Newton step is D * GN:
    //
    //     - (D^-1 J^T J D^-1)^-1 (D^-1 g)
    //   = - D (J^T J)^-1 D D^-1 g
    //   = D -(J^T J)^-1 g
    //
    gauss_newton_step_.array() *= -diagonal_.array();
  }

  return linear_solver_summary;
}

void DoglegStrategy::StepAccepted(double step_quality) {
  CHECK_GT(step_quality, 0.0);

  if (step_quality < decrease_threshold_) {
    radius_ *= 0.5;
  }

  if (step_quality > increase_threshold_) {
    radius_ = std::max(radius_, 3.0 * dogleg_step_norm_);
  }

  // Reduce the regularization multiplier, in the hope that whatever
  // was causing the rank deficiency has gone away and we can return
  // to doing a pure Gauss-Newton solve.
  mu_ = std::max(min_mu_, 2.0 * mu_ / mu_increase_factor_);
  reuse_ = false;
}

void DoglegStrategy::StepRejected(double step_quality) {
  radius_ *= 0.5;
  reuse_ = true;
}

void DoglegStrategy::StepIsInvalid() {
  mu_ *= mu_increase_factor_;
  reuse_ = false;
}

double DoglegStrategy::Radius() const {
  return radius_;
}

bool DoglegStrategy::ComputeSubspaceModel(SparseMatrix* jacobian) {
  // Compute an orthogonal basis for the subspace using QR decomposition.
  Matrix basis_vectors(jacobian->num_cols(), 2);
  basis_vectors.col(0) = gradient_;
  basis_vectors.col(1) = gauss_newton_step_;
  Eigen::ColPivHouseholderQR<Matrix> basis_qr(basis_vectors);

  switch (basis_qr.rank()) {
    case 0:
      // This should never happen, as it implies that both the gradient
      // and the Gauss-Newton step are zero. In this case, the minimizer should
      // have stopped due to the gradient being too small.
      LOG(ERROR) << "Rank of subspace basis is 0. "
                 << "This means that the gradient at the current iterate is "
                 << "zero but the optimization has not been terminated. "
                 << "You may have found a bug in Ceres.";
      return false;

    case 1:
      // Gradient and Gauss-Newton step coincide, so we lie on one of the
      // major axes of the quadratic problem. In this case, we simply move
      // along the gradient until we reach the trust region boundary.
      subspace_is_one_dimensional_ = true;
      return true;

    case 2:
      subspace_is_one_dimensional_ = false;
      break;

    default:
      LOG(ERROR) << "Rank of the subspace basis matrix is reported to be "
                 << "greater than 2. As the matrix contains only two "
                 << "columns this cannot be true and is indicative of "
                 << "a bug.";
      return false;
  }

  // The subspace is two-dimensional, so compute the subspace model.
  // Given the basis U, this is
  //
  //   subspace_g_ = g_scaled^T U
  //
  // and
  //
  //   subspace_B_ = U^T (J_scaled^T J_scaled) U
  //
  // As J_scaled = J * D^-1, the latter becomes
  //
  //   subspace_B_ = ((U^T D^-1) J^T) (J (D^-1 U))
  //               = (J (D^-1 U))^T (J (D^-1 U))

  subspace_basis_ =
      basis_qr.householderQ() * Matrix::Identity(jacobian->num_cols(), 2);

  subspace_g_ = subspace_basis_.transpose() * gradient_;

  Eigen::Matrix<double, 2, Eigen::Dynamic, Eigen::RowMajor>
      Jb(2, jacobian->num_rows());
  Jb.setZero();

  Vector tmp;
  tmp = (subspace_basis_.col(0).array() / diagonal_.array()).matrix();
  jacobian->RightMultiply(tmp.data(), Jb.row(0).data());
  tmp = (subspace_basis_.col(1).array() / diagonal_.array()).matrix();
  jacobian->RightMultiply(tmp.data(), Jb.row(1).data());

  subspace_B_ = Jb * Jb.transpose();

  return true;
}

}  // namespace internal
}  // namespace ceres