Welcome to mirror list, hosted at ThFree Co, Russian Federation.

implicit_schur_complement.cc « ceres « internal « ceres « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: d05f03817b7b714a2423f301e22c13b9799e9470 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2015 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
//   this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
//   this list of conditions and the following disclaimer in the documentation
//   and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
//   used to endorse or promote products derived from this software without
//   specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)

#include "ceres/implicit_schur_complement.h"

#include "Eigen/Dense"
#include "ceres/block_sparse_matrix.h"
#include "ceres/block_structure.h"
#include "ceres/internal/eigen.h"
#include "ceres/internal/scoped_ptr.h"
#include "ceres/linear_solver.h"
#include "ceres/types.h"
#include "glog/logging.h"

namespace ceres {
namespace internal {

ImplicitSchurComplement::ImplicitSchurComplement(
    const LinearSolver::Options& options)
    : options_(options),
      D_(NULL),
      b_(NULL) {
}

ImplicitSchurComplement::~ImplicitSchurComplement() {
}

void ImplicitSchurComplement::Init(const BlockSparseMatrix& A,
                                   const double* D,
                                   const double* b) {
  // Since initialization is reasonably heavy, perhaps we can save on
  // constructing a new object everytime.
  if (A_ == NULL) {
    A_.reset(PartitionedMatrixViewBase::Create(options_, A));
  }

  D_ = D;
  b_ = b;

  // Initialize temporary storage and compute the block diagonals of
  // E'E and F'E.
  if (block_diagonal_EtE_inverse_ == NULL) {
    block_diagonal_EtE_inverse_.reset(A_->CreateBlockDiagonalEtE());
    if (options_.preconditioner_type == JACOBI) {
      block_diagonal_FtF_inverse_.reset(A_->CreateBlockDiagonalFtF());
    }
    rhs_.resize(A_->num_cols_f());
    rhs_.setZero();
    tmp_rows_.resize(A_->num_rows());
    tmp_e_cols_.resize(A_->num_cols_e());
    tmp_e_cols_2_.resize(A_->num_cols_e());
    tmp_f_cols_.resize(A_->num_cols_f());
  } else {
    A_->UpdateBlockDiagonalEtE(block_diagonal_EtE_inverse_.get());
    if (options_.preconditioner_type == JACOBI) {
      A_->UpdateBlockDiagonalFtF(block_diagonal_FtF_inverse_.get());
    }
  }

  // The block diagonals of the augmented linear system contain
  // contributions from the diagonal D if it is non-null. Add that to
  // the block diagonals and invert them.
  AddDiagonalAndInvert(D_, block_diagonal_EtE_inverse_.get());
  if (options_.preconditioner_type == JACOBI) {
    AddDiagonalAndInvert((D_ ==  NULL) ? NULL : D_ + A_->num_cols_e(),
                         block_diagonal_FtF_inverse_.get());
  }

  // Compute the RHS of the Schur complement system.
  UpdateRhs();
}

// Evaluate the product
//
//   Sx = [F'F - F'E (E'E)^-1 E'F]x
//
// By breaking it down into individual matrix vector products
// involving the matrices E and F. This is implemented using a
// PartitionedMatrixView of the input matrix A.
void ImplicitSchurComplement::RightMultiply(const double* x, double* y) const {
  // y1 = F x
  tmp_rows_.setZero();
  A_->RightMultiplyF(x, tmp_rows_.data());

  // y2 = E' y1
  tmp_e_cols_.setZero();
  A_->LeftMultiplyE(tmp_rows_.data(), tmp_e_cols_.data());

  // y3 = -(E'E)^-1 y2
  tmp_e_cols_2_.setZero();
  block_diagonal_EtE_inverse_->RightMultiply(tmp_e_cols_.data(),
                                             tmp_e_cols_2_.data());
  tmp_e_cols_2_ *= -1.0;

  // y1 = y1 + E y3
  A_->RightMultiplyE(tmp_e_cols_2_.data(), tmp_rows_.data());

  // y5 = D * x
  if (D_ != NULL) {
    ConstVectorRef Dref(D_ + A_->num_cols_e(), num_cols());
    VectorRef(y, num_cols()) =
        (Dref.array().square() *
         ConstVectorRef(x, num_cols()).array()).matrix();
  } else {
    VectorRef(y, num_cols()).setZero();
  }

  // y = y5 + F' y1
  A_->LeftMultiplyF(tmp_rows_.data(), y);
}

// Given a block diagonal matrix and an optional array of diagonal
// entries D, add them to the diagonal of the matrix and compute the
// inverse of each diagonal block.
void ImplicitSchurComplement::AddDiagonalAndInvert(
    const double* D,
    BlockSparseMatrix* block_diagonal) {
  const CompressedRowBlockStructure* block_diagonal_structure =
      block_diagonal->block_structure();
  for (int r = 0; r < block_diagonal_structure->rows.size(); ++r) {
    const int row_block_pos = block_diagonal_structure->rows[r].block.position;
    const int row_block_size = block_diagonal_structure->rows[r].block.size;
    const Cell& cell = block_diagonal_structure->rows[r].cells[0];
    MatrixRef m(block_diagonal->mutable_values() + cell.position,
                row_block_size, row_block_size);

    if (D != NULL) {
      ConstVectorRef d(D + row_block_pos, row_block_size);
      m += d.array().square().matrix().asDiagonal();
    }

    m = m
        .selfadjointView<Eigen::Upper>()
        .llt()
        .solve(Matrix::Identity(row_block_size, row_block_size));
  }
}

// Similar to RightMultiply, use the block structure of the matrix A
// to compute y = (E'E)^-1 (E'b - E'F x).
void ImplicitSchurComplement::BackSubstitute(const double* x, double* y) {
  const int num_cols_e = A_->num_cols_e();
  const int num_cols_f = A_->num_cols_f();
  const int num_cols =  A_->num_cols();
  const int num_rows = A_->num_rows();

  // y1 = F x
  tmp_rows_.setZero();
  A_->RightMultiplyF(x, tmp_rows_.data());

  // y2 = b - y1
  tmp_rows_ = ConstVectorRef(b_, num_rows) - tmp_rows_;

  // y3 = E' y2
  tmp_e_cols_.setZero();
  A_->LeftMultiplyE(tmp_rows_.data(), tmp_e_cols_.data());

  // y = (E'E)^-1 y3
  VectorRef(y, num_cols).setZero();
  block_diagonal_EtE_inverse_->RightMultiply(tmp_e_cols_.data(), y);

  // The full solution vector y has two blocks. The first block of
  // variables corresponds to the eliminated variables, which we just
  // computed via back substitution. The second block of variables
  // corresponds to the Schur complement system, so we just copy those
  // values from the solution to the Schur complement.
  VectorRef(y + num_cols_e, num_cols_f) =  ConstVectorRef(x, num_cols_f);
}

// Compute the RHS of the Schur complement system.
//
// rhs = F'b - F'E (E'E)^-1 E'b
//
// Like BackSubstitute, we use the block structure of A to implement
// this using a series of matrix vector products.
void ImplicitSchurComplement::UpdateRhs() {
  // y1 = E'b
  tmp_e_cols_.setZero();
  A_->LeftMultiplyE(b_, tmp_e_cols_.data());

  // y2 = (E'E)^-1 y1
  Vector y2 = Vector::Zero(A_->num_cols_e());
  block_diagonal_EtE_inverse_->RightMultiply(tmp_e_cols_.data(), y2.data());

  // y3 = E y2
  tmp_rows_.setZero();
  A_->RightMultiplyE(y2.data(), tmp_rows_.data());

  // y3 = b - y3
  tmp_rows_ = ConstVectorRef(b_, A_->num_rows()) - tmp_rows_;

  // rhs = F' y3
  rhs_.setZero();
  A_->LeftMultiplyF(tmp_rows_.data(), rhs_.data());
}

}  // namespace internal
}  // namespace ceres