Welcome to mirror list, hosted at ThFree Co, Russian Federation.

low_rank_inverse_hessian.cc « ceres « internal « ceres « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 1c6c9925f1c45b12799fbe15b03cf4feafe75123 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2015 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
//   this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
//   this list of conditions and the following disclaimer in the documentation
//   and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
//   used to endorse or promote products derived from this software without
//   specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)

#include <list>

#include "ceres/internal/eigen.h"
#include "ceres/low_rank_inverse_hessian.h"
#include "glog/logging.h"

namespace ceres {
namespace internal {

using std::list;

// The (L)BFGS algorithm explicitly requires that the secant equation:
//
//   B_{k+1} * s_k = y_k
//
// Is satisfied at each iteration, where B_{k+1} is the approximated
// Hessian at the k+1-th iteration, s_k = (x_{k+1} - x_{k}) and
// y_k = (grad_{k+1} - grad_{k}). As the approximated Hessian must be
// positive definite, this is equivalent to the condition:
//
//   s_k^T * y_k > 0     [s_k^T * B_{k+1} * s_k = s_k^T * y_k > 0]
//
// This condition would always be satisfied if the function was strictly
// convex, alternatively, it is always satisfied provided that a Wolfe line
// search is used (even if the function is not strictly convex).  See [1]
// (p138) for a proof.
//
// Although Ceres will always use a Wolfe line search when using (L)BFGS,
// practical implementation considerations mean that the line search
// may return a point that satisfies only the Armijo condition, and thus
// could violate the Secant equation.  As such, we will only use a step
// to update the Hessian approximation if:
//
//   s_k^T * y_k > tolerance
//
// It is important that tolerance is very small (and >=0), as otherwise we
// might skip the update too often and fail to capture important curvature
// information in the Hessian.  For example going from 1e-10 -> 1e-14 improves
// the NIST benchmark score from 43/54 to 53/54.
//
// [1] Nocedal J., Wright S., Numerical Optimization, 2nd Ed. Springer, 1999.
//
// TODO(alexs.mac): Consider using Damped BFGS update instead of
// skipping update.
const double kLBFGSSecantConditionHessianUpdateTolerance = 1e-14;

LowRankInverseHessian::LowRankInverseHessian(
    int num_parameters,
    int max_num_corrections,
    bool use_approximate_eigenvalue_scaling)
    : num_parameters_(num_parameters),
      max_num_corrections_(max_num_corrections),
      use_approximate_eigenvalue_scaling_(use_approximate_eigenvalue_scaling),
      approximate_eigenvalue_scale_(1.0),
      delta_x_history_(num_parameters, max_num_corrections),
      delta_gradient_history_(num_parameters, max_num_corrections),
      delta_x_dot_delta_gradient_(max_num_corrections) {
}

bool LowRankInverseHessian::Update(const Vector& delta_x,
                                   const Vector& delta_gradient) {
  const double delta_x_dot_delta_gradient = delta_x.dot(delta_gradient);
  if (delta_x_dot_delta_gradient <=
      kLBFGSSecantConditionHessianUpdateTolerance) {
    VLOG(2) << "Skipping L-BFGS Update, delta_x_dot_delta_gradient too "
            << "small: " << delta_x_dot_delta_gradient << ", tolerance: "
            << kLBFGSSecantConditionHessianUpdateTolerance
            << " (Secant condition).";
    return false;
  }


  int next = indices_.size();
  // Once the size of the list reaches max_num_corrections_, simulate
  // a circular buffer by removing the first element of the list and
  // making it the next position where the LBFGS history is stored.
  if (next == max_num_corrections_) {
    next = indices_.front();
    indices_.pop_front();
  }

  indices_.push_back(next);
  delta_x_history_.col(next) = delta_x;
  delta_gradient_history_.col(next) = delta_gradient;
  delta_x_dot_delta_gradient_(next) = delta_x_dot_delta_gradient;
  approximate_eigenvalue_scale_ =
      delta_x_dot_delta_gradient / delta_gradient.squaredNorm();
  return true;
}

void LowRankInverseHessian::RightMultiply(const double* x_ptr,
                                          double* y_ptr) const {
  ConstVectorRef gradient(x_ptr, num_parameters_);
  VectorRef search_direction(y_ptr, num_parameters_);

  search_direction = gradient;

  const int num_corrections = indices_.size();
  Vector alpha(num_corrections);

  for (list<int>::const_reverse_iterator it = indices_.rbegin();
       it != indices_.rend();
       ++it) {
    const double alpha_i = delta_x_history_.col(*it).dot(search_direction) /
        delta_x_dot_delta_gradient_(*it);
    search_direction -= alpha_i * delta_gradient_history_.col(*it);
    alpha(*it) = alpha_i;
  }

  if (use_approximate_eigenvalue_scaling_) {
    // Rescale the initial inverse Hessian approximation (H_0) to be iteratively
    // updated so that it is of similar 'size' to the true inverse Hessian along
    // the most recent search direction.  As shown in [1]:
    //
    //   \gamma_k = (delta_gradient_{k-1}' * delta_x_{k-1}) /
    //              (delta_gradient_{k-1}' * delta_gradient_{k-1})
    //
    // Satisfies:
    //
    //   (1 / \lambda_m) <= \gamma_k <= (1 / \lambda_1)
    //
    // Where \lambda_1 & \lambda_m are the smallest and largest eigenvalues of
    // the true Hessian (not the inverse) along the most recent search direction
    // respectively.  Thus \gamma is an approximate eigenvalue of the true
    // inverse Hessian, and choosing: H_0 = I * \gamma will yield a starting
    // point that has a similar scale to the true inverse Hessian.  This
    // technique is widely reported to often improve convergence, however this
    // is not universally true, particularly if there are errors in the initial
    // jacobians, or if there are significant differences in the sensitivity
    // of the problem to the parameters (i.e. the range of the magnitudes of
    // the components of the gradient is large).
    //
    // The original origin of this rescaling trick is somewhat unclear, the
    // earliest reference appears to be Oren [1], however it is widely discussed
    // without specific attributation in various texts including [2] (p143/178).
    //
    // [1] Oren S.S., Self-scaling variable metric (SSVM) algorithms Part II:
    //     Implementation and experiments, Management Science,
    //     20(5), 863-874, 1974.
    // [2] Nocedal J., Wright S., Numerical Optimization, Springer, 1999.
    search_direction *= approximate_eigenvalue_scale_;

    VLOG(4) << "Applying approximate_eigenvalue_scale: "
            << approximate_eigenvalue_scale_ << " to initial inverse Hessian "
            << "approximation.";
  }

  for (list<int>::const_iterator it = indices_.begin();
       it != indices_.end();
       ++it) {
    const double beta = delta_gradient_history_.col(*it).dot(search_direction) /
        delta_x_dot_delta_gradient_(*it);
    search_direction += delta_x_history_.col(*it) * (alpha(*it) - beta);
  }
}

}  // namespace internal
}  // namespace ceres