Welcome to mirror list, hosted at ThFree Co, Russian Federation.

problem_impl.h « ceres « internal « ceres « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 22073b674f1f02c963f67e4b20f70feafb1b9acd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2021 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
//   this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
//   this list of conditions and the following disclaimer in the documentation
//   and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
//   used to endorse or promote products derived from this software without
//   specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: keir@google.com (Keir Mierle)
//
// This is the implementation of the public Problem API. The pointer to
// implementation (PIMPL) idiom makes it possible for Ceres internal code to
// refer to the private data members without needing to exposing it to the
// world. An alternative to PIMPL is to have a factory which returns instances
// of a virtual base class; while that approach would work, it requires clients
// to always put a Problem object into a scoped pointer; this needlessly muddies
// client code for little benefit. Therefore, the PIMPL comprise was chosen.

#ifndef CERES_PUBLIC_PROBLEM_IMPL_H_
#define CERES_PUBLIC_PROBLEM_IMPL_H_

#include <array>
#include <map>
#include <memory>
#include <unordered_map>
#include <unordered_set>
#include <vector>

#include "ceres/context_impl.h"
#include "ceres/internal/disable_warnings.h"
#include "ceres/internal/export.h"
#include "ceres/internal/port.h"
#include "ceres/manifold.h"
#include "ceres/problem.h"
#include "ceres/types.h"

namespace ceres {

class CostFunction;
class EvaluationCallback;
class LossFunction;
class LocalParameterization;
struct CRSMatrix;

namespace internal {

class Program;
class ResidualBlock;

class CERES_NO_EXPORT ProblemImpl {
 public:
  using ParameterMap = std::map<double*, ParameterBlock*>;
  using ResidualBlockSet = std::unordered_set<ResidualBlock*>;
  using CostFunctionRefCount = std::map<CostFunction*, int>;
  using LossFunctionRefCount = std::map<LossFunction*, int>;

  ProblemImpl();
  explicit ProblemImpl(const Problem::Options& options);
  ProblemImpl(const ProblemImpl&) = delete;
  void operator=(const ProblemImpl&) = delete;

  ~ProblemImpl();

  // See the public problem.h file for description of these methods.
  ResidualBlockId AddResidualBlock(CostFunction* cost_function,
                                   LossFunction* loss_function,
                                   double* const* const parameter_blocks,
                                   int num_parameter_blocks);

  template <typename... Ts>
  ResidualBlockId AddResidualBlock(CostFunction* cost_function,
                                   LossFunction* loss_function,
                                   double* x0,
                                   Ts*... xs) {
    const std::array<double*, sizeof...(Ts) + 1> parameter_blocks{{x0, xs...}};
    return AddResidualBlock(cost_function,
                            loss_function,
                            parameter_blocks.data(),
                            static_cast<int>(parameter_blocks.size()));
  }

  void AddParameterBlock(double* values, int size);
  void AddParameterBlock(double* values,
                         int size,
                         LocalParameterization* local_parameterization);

  void AddParameterBlock(double* values, int size, Manifold* manifold);

  void RemoveResidualBlock(ResidualBlock* residual_block);
  void RemoveParameterBlock(const double* values);

  void SetParameterBlockConstant(const double* values);
  void SetParameterBlockVariable(double* values);
  bool IsParameterBlockConstant(const double* values) const;

  void SetParameterization(double* values,
                           LocalParameterization* local_parameterization);
  const LocalParameterization* GetParameterization(const double* values) const;
  bool HasParameterization(const double* values) const;

  void SetManifold(double* values, Manifold* manifold);
  const Manifold* GetManifold(const double* values) const;
  bool HasManifold(const double* values) const;

  void SetParameterLowerBound(double* values, int index, double lower_bound);
  void SetParameterUpperBound(double* values, int index, double upper_bound);
  double GetParameterLowerBound(const double* values, int index) const;
  double GetParameterUpperBound(const double* values, int index) const;

  bool Evaluate(const Problem::EvaluateOptions& options,
                double* cost,
                std::vector<double>* residuals,
                std::vector<double>* gradient,
                CRSMatrix* jacobian);

  bool EvaluateResidualBlock(ResidualBlock* residual_block,
                             bool apply_loss_function,
                             bool new_point,
                             double* cost,
                             double* residuals,
                             double** jacobians) const;

  int NumParameterBlocks() const;
  int NumParameters() const;
  int NumResidualBlocks() const;
  int NumResiduals() const;

  int ParameterBlockSize(const double* values) const;
  int ParameterBlockTangentSize(const double* values) const;

  bool HasParameterBlock(const double* values) const;

  void GetParameterBlocks(std::vector<double*>* parameter_blocks) const;
  void GetResidualBlocks(std::vector<ResidualBlockId>* residual_blocks) const;

  void GetParameterBlocksForResidualBlock(
      const ResidualBlockId residual_block,
      std::vector<double*>* parameter_blocks) const;

  const CostFunction* GetCostFunctionForResidualBlock(
      const ResidualBlockId residual_block) const;
  const LossFunction* GetLossFunctionForResidualBlock(
      const ResidualBlockId residual_block) const;

  void GetResidualBlocksForParameterBlock(
      const double* values,
      std::vector<ResidualBlockId>* residual_blocks) const;

  const Program& program() const { return *program_; }
  Program* mutable_program() { return program_.get(); }

  const ParameterMap& parameter_map() const { return parameter_block_map_; }
  const ResidualBlockSet& residual_block_set() const {
    CHECK(options_.enable_fast_removal)
        << "Fast removal not enabled, residual_block_set is not maintained.";
    return residual_block_set_;
  }

  ContextImpl* context() { return context_impl_; }

 private:
  ParameterBlock* InternalAddParameterBlock(double* values, int size);
  void InternalSetParameterization(
      double* values,
      ParameterBlock* parameter_block,
      LocalParameterization* local_parameterization);
  void InternalSetManifold(double* values,
                           ParameterBlock* parameter_block,
                           Manifold* manifold);

  void InternalRemoveResidualBlock(ResidualBlock* residual_block);

  // Delete the arguments in question. These differ from the Remove* functions
  // in that they do not clean up references to the block to delete; they
  // merely delete them.
  template <typename Block>
  void DeleteBlockInVector(std::vector<Block*>* mutable_blocks,
                           Block* block_to_remove);
  void DeleteBlock(ResidualBlock* residual_block);
  void DeleteBlock(ParameterBlock* parameter_block);

  const Problem::Options options_;

  bool context_impl_owned_;
  ContextImpl* context_impl_;

  // The mapping from user pointers to parameter blocks.
  ParameterMap parameter_block_map_;

  // Iff enable_fast_removal is enabled, contains the current residual blocks.
  ResidualBlockSet residual_block_set_;

  // The actual parameter and residual blocks.
  std::unique_ptr<internal::Program> program_;

  // TODO(sameeragarwal): Unify the shared object handling across object types.
  // Right now we are using vectors for LocalParameterization and Manifold
  // objects and reference counting for CostFunctions and LossFunctions. Ideally
  // this should be done uniformly.

  // When removing parameter blocks, parameterizations have ambiguous
  // ownership. Instead of scanning the entire problem to see if the
  // parameterization is shared with other parameter blocks, buffer
  // them until destruction.
  std::vector<LocalParameterization*> local_parameterizations_to_delete_;

  // When removing parameter blocks, manifolds have ambiguous
  // ownership. Instead of scanning the entire problem to see if the
  // manifold is shared with other parameter blocks, buffer
  // them until destruction.
  std::vector<Manifold*> manifolds_to_delete_;

  // For each cost function and loss function in the problem, a count
  // of the number of residual blocks that refer to them. When the
  // count goes to zero and the problem owns these objects, they are
  // destroyed.
  CostFunctionRefCount cost_function_ref_count_;
  LossFunctionRefCount loss_function_ref_count_;

  // Because we wrap LocalParameterization objects using a ManifoldAdapter, when
  // the user calls GetParameterization we cannot use the same logic as
  // GetManifold as the ParameterBlock object only returns a Manifold object. So
  // this map stores the association between parameter blocks and local
  // parameterizations.
  //
  // This is a temporary object which will be removed once the
  // LocalParameterization to Manifold transition is complete.
  std::unordered_map<const double*, LocalParameterization*>
      parameter_block_to_local_param_;
};

}  // namespace internal
}  // namespace ceres

#include "ceres/internal/reenable_warnings.h"

#endif  // CERES_PUBLIC_PROBLEM_IMPL_H_