Welcome to mirror list, hosted at ThFree Co, Russian Federation.

program_evaluator.h « ceres « internal « ceres « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 36c9c64baf67673237b82aad9894cccf031e6926 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2015 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
//   this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
//   this list of conditions and the following disclaimer in the documentation
//   and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
//   used to endorse or promote products derived from this software without
//   specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: keir@google.com (Keir Mierle)
//
// The ProgramEvaluator runs the cost functions contained in each residual block
// and stores the result into a jacobian. The particular type of jacobian is
// abstracted out using two template parameters:
//
//   - An "EvaluatePreparer" that is responsible for creating the array with
//     pointers to the jacobian blocks where the cost function evaluates to.
//   - A "JacobianWriter" that is responsible for storing the resulting
//     jacobian blocks in the passed sparse matrix.
//
// This abstraction affords an efficient evaluator implementation while still
// supporting writing to multiple sparse matrix formats. For example, when the
// ProgramEvaluator is parameterized for writing to block sparse matrices, the
// residual jacobians are written directly into their final position in the
// block sparse matrix by the user's CostFunction; there is no copying.
//
// The evaluation is threaded with OpenMP or C++ threads.
//
// The EvaluatePreparer and JacobianWriter interfaces are as follows:
//
//   class EvaluatePreparer {
//     // Prepare the jacobians array for use as the destination of a call to
//     // a cost function's evaluate method.
//     void Prepare(const ResidualBlock* residual_block,
//                  int residual_block_index,
//                  SparseMatrix* jacobian,
//                  double** jacobians);
//   }
//
//   class JacobianWriter {
//     // Create a jacobian that this writer can write. Same as
//     // Evaluator::CreateJacobian.
//     SparseMatrix* CreateJacobian() const;
//
//     // Create num_threads evaluate preparers. Caller owns result which must
//     // be freed with delete[]. Resulting preparers are valid while *this is.
//     EvaluatePreparer* CreateEvaluatePreparers(int num_threads);
//
//     // Write the block jacobians from a residual block evaluation to the
//     // larger sparse jacobian.
//     void Write(int residual_id,
//                int residual_offset,
//                double** jacobians,
//                SparseMatrix* jacobian);
//   }
//
// Note: The ProgramEvaluator is not thread safe, since internally it maintains
// some per-thread scratch space.

#ifndef CERES_INTERNAL_PROGRAM_EVALUATOR_H_
#define CERES_INTERNAL_PROGRAM_EVALUATOR_H_

// This include must come before any #ifndef check on Ceres compile options.
// clang-format off
#include "ceres/internal/port.h"
// clang-format on

#include <atomic>
#include <map>
#include <memory>
#include <string>
#include <vector>

#include "ceres/evaluation_callback.h"
#include "ceres/execution_summary.h"
#include "ceres/internal/eigen.h"
#include "ceres/parallel_for.h"
#include "ceres/parameter_block.h"
#include "ceres/program.h"
#include "ceres/residual_block.h"
#include "ceres/small_blas.h"

namespace ceres {
namespace internal {

struct NullJacobianFinalizer {
  void operator()(SparseMatrix* jacobian, int num_parameters) {}
};

template <typename EvaluatePreparer,
          typename JacobianWriter,
          typename JacobianFinalizer = NullJacobianFinalizer>
class ProgramEvaluator : public Evaluator {
 public:
  ProgramEvaluator(const Evaluator::Options& options, Program* program)
      : options_(options),
        program_(program),
        jacobian_writer_(options, program),
        evaluate_preparers_(
            jacobian_writer_.CreateEvaluatePreparers(options.num_threads)) {
#ifdef CERES_NO_THREADS
    if (options_.num_threads > 1) {
      LOG(WARNING) << "No threading support is compiled into this binary; "
                   << "only options.num_threads = 1 is supported. Switching "
                   << "to single threaded mode.";
      options_.num_threads = 1;
    }
#endif  // CERES_NO_THREADS

    BuildResidualLayout(*program, &residual_layout_);
    evaluate_scratch_.reset(
        CreateEvaluatorScratch(*program, options.num_threads));
  }

  // Implementation of Evaluator interface.
  SparseMatrix* CreateJacobian() const final {
    return jacobian_writer_.CreateJacobian();
  }

  bool Evaluate(const Evaluator::EvaluateOptions& evaluate_options,
                const double* state,
                double* cost,
                double* residuals,
                double* gradient,
                SparseMatrix* jacobian) final {
    ScopedExecutionTimer total_timer("Evaluator::Total", &execution_summary_);
    ScopedExecutionTimer call_type_timer(
        gradient == nullptr && jacobian == nullptr ? "Evaluator::Residual"
                                                   : "Evaluator::Jacobian",
        &execution_summary_);

    // The parameters are stateful, so set the state before evaluating.
    if (!program_->StateVectorToParameterBlocks(state)) {
      return false;
    }

    // Notify the user about a new evaluation point if they are interested.
    if (options_.evaluation_callback != nullptr) {
      program_->CopyParameterBlockStateToUserState();
      options_.evaluation_callback->PrepareForEvaluation(
          /*jacobians=*/(gradient != nullptr || jacobian != nullptr),
          evaluate_options.new_evaluation_point);
    }

    if (residuals != nullptr) {
      VectorRef(residuals, program_->NumResiduals()).setZero();
    }

    if (jacobian != nullptr) {
      jacobian->SetZero();
    }

    // Each thread gets it's own cost and evaluate scratch space.
    for (int i = 0; i < options_.num_threads; ++i) {
      evaluate_scratch_[i].cost = 0.0;
      if (gradient != nullptr) {
        VectorRef(evaluate_scratch_[i].gradient.get(),
                  program_->NumEffectiveParameters())
            .setZero();
      }
    }

    const int num_residual_blocks = program_->NumResidualBlocks();
    // This bool is used to disable the loop if an error is encountered without
    // breaking out of it. The remaining loop iterations are still run, but with
    // an empty body, and so will finish quickly.
    std::atomic_bool abort(false);
    ParallelFor(
        options_.context,
        0,
        num_residual_blocks,
        options_.num_threads,
        [&](int thread_id, int i) {
          if (abort) {
            return;
          }

          EvaluatePreparer* preparer = &evaluate_preparers_[thread_id];
          EvaluateScratch* scratch = &evaluate_scratch_[thread_id];

          // Prepare block residuals if requested.
          const ResidualBlock* residual_block = program_->residual_blocks()[i];
          double* block_residuals = nullptr;
          if (residuals != nullptr) {
            block_residuals = residuals + residual_layout_[i];
          } else if (gradient != nullptr) {
            block_residuals = scratch->residual_block_residuals.get();
          }

          // Prepare block jacobians if requested.
          double** block_jacobians = nullptr;
          if (jacobian != nullptr || gradient != nullptr) {
            preparer->Prepare(residual_block,
                              i,
                              jacobian,
                              scratch->jacobian_block_ptrs.get());
            block_jacobians = scratch->jacobian_block_ptrs.get();
          }

          // Evaluate the cost, residuals, and jacobians.
          double block_cost;
          if (!residual_block->Evaluate(
                  evaluate_options.apply_loss_function,
                  &block_cost,
                  block_residuals,
                  block_jacobians,
                  scratch->residual_block_evaluate_scratch.get())) {
            abort = true;
            return;
          }

          scratch->cost += block_cost;

          // Store the jacobians, if they were requested.
          if (jacobian != nullptr) {
            jacobian_writer_.Write(
                i, residual_layout_[i], block_jacobians, jacobian);
          }

          // Compute and store the gradient, if it was requested.
          if (gradient != nullptr) {
            int num_residuals = residual_block->NumResiduals();
            int num_parameter_blocks = residual_block->NumParameterBlocks();
            for (int j = 0; j < num_parameter_blocks; ++j) {
              const ParameterBlock* parameter_block =
                  residual_block->parameter_blocks()[j];
              if (parameter_block->IsConstant()) {
                continue;
              }

              MatrixTransposeVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>(
                  block_jacobians[j],
                  num_residuals,
                  parameter_block->LocalSize(),
                  block_residuals,
                  scratch->gradient.get() + parameter_block->delta_offset());
            }
          }
        });

    if (!abort) {
      const int num_parameters = program_->NumEffectiveParameters();

      // Sum the cost and gradient (if requested) from each thread.
      (*cost) = 0.0;
      if (gradient != nullptr) {
        VectorRef(gradient, num_parameters).setZero();
      }
      for (int i = 0; i < options_.num_threads; ++i) {
        (*cost) += evaluate_scratch_[i].cost;
        if (gradient != nullptr) {
          VectorRef(gradient, num_parameters) +=
              VectorRef(evaluate_scratch_[i].gradient.get(), num_parameters);
        }
      }

      // Finalize the Jacobian if it is available.
      // `num_parameters` is passed to the finalizer so that additional
      // storage can be reserved for additional diagonal elements if
      // necessary.
      if (jacobian != nullptr) {
        JacobianFinalizer f;
        f(jacobian, num_parameters);
      }
    }
    return !abort;
  }

  bool Plus(const double* state,
            const double* delta,
            double* state_plus_delta) const final {
    return program_->Plus(state, delta, state_plus_delta);
  }

  int NumParameters() const final { return program_->NumParameters(); }
  int NumEffectiveParameters() const final {
    return program_->NumEffectiveParameters();
  }

  int NumResiduals() const final { return program_->NumResiduals(); }

  std::map<std::string, CallStatistics> Statistics() const final {
    return execution_summary_.statistics();
  }

 private:
  // Per-thread scratch space needed to evaluate and store each residual block.
  struct EvaluateScratch {
    void Init(int max_parameters_per_residual_block,
              int max_scratch_doubles_needed_for_evaluate,
              int max_residuals_per_residual_block,
              int num_parameters) {
      residual_block_evaluate_scratch.reset(
          new double[max_scratch_doubles_needed_for_evaluate]);
      gradient.reset(new double[num_parameters]);
      VectorRef(gradient.get(), num_parameters).setZero();
      residual_block_residuals.reset(
          new double[max_residuals_per_residual_block]);
      jacobian_block_ptrs.reset(new double*[max_parameters_per_residual_block]);
    }

    double cost;
    std::unique_ptr<double[]> residual_block_evaluate_scratch;
    // The gradient in the local parameterization.
    std::unique_ptr<double[]> gradient;
    // Enough space to store the residual for the largest residual block.
    std::unique_ptr<double[]> residual_block_residuals;
    std::unique_ptr<double*[]> jacobian_block_ptrs;
  };

  static void BuildResidualLayout(const Program& program,
                                  std::vector<int>* residual_layout) {
    const std::vector<ResidualBlock*>& residual_blocks =
        program.residual_blocks();
    residual_layout->resize(program.NumResidualBlocks());
    int residual_pos = 0;
    for (int i = 0; i < residual_blocks.size(); ++i) {
      const int num_residuals = residual_blocks[i]->NumResiduals();
      (*residual_layout)[i] = residual_pos;
      residual_pos += num_residuals;
    }
  }

  // Create scratch space for each thread evaluating the program.
  static EvaluateScratch* CreateEvaluatorScratch(const Program& program,
                                                 int num_threads) {
    int max_parameters_per_residual_block =
        program.MaxParametersPerResidualBlock();
    int max_scratch_doubles_needed_for_evaluate =
        program.MaxScratchDoublesNeededForEvaluate();
    int max_residuals_per_residual_block =
        program.MaxResidualsPerResidualBlock();
    int num_parameters = program.NumEffectiveParameters();

    EvaluateScratch* evaluate_scratch = new EvaluateScratch[num_threads];
    for (int i = 0; i < num_threads; i++) {
      evaluate_scratch[i].Init(max_parameters_per_residual_block,
                               max_scratch_doubles_needed_for_evaluate,
                               max_residuals_per_residual_block,
                               num_parameters);
    }
    return evaluate_scratch;
  }

  Evaluator::Options options_;
  Program* program_;
  JacobianWriter jacobian_writer_;
  std::unique_ptr<EvaluatePreparer[]> evaluate_preparers_;
  std::unique_ptr<EvaluateScratch[]> evaluate_scratch_;
  std::vector<int> residual_layout_;
  ::ceres::internal::ExecutionSummary execution_summary_;
};

}  // namespace internal
}  // namespace ceres

#endif  // CERES_INTERNAL_PROGRAM_EVALUATOR_H_