Welcome to mirror list, hosted at ThFree Co, Russian Federation.

suitesparse.cc « ceres « internal « ceres « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 883dcc8f63e863025f6ef85822e6f38f84a25da5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2015 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
//   this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
//   this list of conditions and the following disclaimer in the documentation
//   and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
//   used to endorse or promote products derived from this software without
//   specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)

// This include must come before any #ifndef check on Ceres compile options.
#include "ceres/internal/config.h"

#ifndef CERES_NO_SUITESPARSE
#include <memory>
#include <vector>

#include "ceres/compressed_col_sparse_matrix_utils.h"
#include "ceres/compressed_row_sparse_matrix.h"
#include "ceres/linear_solver.h"
#include "ceres/suitesparse.h"
#include "ceres/triplet_sparse_matrix.h"
#include "cholmod.h"

namespace ceres {
namespace internal {

using std::string;
using std::vector;

SuiteSparse::SuiteSparse() { cholmod_start(&cc_); }

SuiteSparse::~SuiteSparse() { cholmod_finish(&cc_); }

cholmod_sparse* SuiteSparse::CreateSparseMatrix(TripletSparseMatrix* A) {
  cholmod_triplet triplet;

  triplet.nrow = A->num_rows();
  triplet.ncol = A->num_cols();
  triplet.nzmax = A->max_num_nonzeros();
  triplet.nnz = A->num_nonzeros();
  triplet.i = reinterpret_cast<void*>(A->mutable_rows());
  triplet.j = reinterpret_cast<void*>(A->mutable_cols());
  triplet.x = reinterpret_cast<void*>(A->mutable_values());
  triplet.stype = 0;  // Matrix is not symmetric.
  triplet.itype = CHOLMOD_INT;
  triplet.xtype = CHOLMOD_REAL;
  triplet.dtype = CHOLMOD_DOUBLE;

  return cholmod_triplet_to_sparse(&triplet, triplet.nnz, &cc_);
}

cholmod_sparse* SuiteSparse::CreateSparseMatrixTranspose(
    TripletSparseMatrix* A) {
  cholmod_triplet triplet;

  triplet.ncol = A->num_rows();  // swap row and columns
  triplet.nrow = A->num_cols();
  triplet.nzmax = A->max_num_nonzeros();
  triplet.nnz = A->num_nonzeros();

  // swap rows and columns
  triplet.j = reinterpret_cast<void*>(A->mutable_rows());
  triplet.i = reinterpret_cast<void*>(A->mutable_cols());
  triplet.x = reinterpret_cast<void*>(A->mutable_values());
  triplet.stype = 0;  // Matrix is not symmetric.
  triplet.itype = CHOLMOD_INT;
  triplet.xtype = CHOLMOD_REAL;
  triplet.dtype = CHOLMOD_DOUBLE;

  return cholmod_triplet_to_sparse(&triplet, triplet.nnz, &cc_);
}

cholmod_sparse SuiteSparse::CreateSparseMatrixTransposeView(
    CompressedRowSparseMatrix* A) {
  cholmod_sparse m;
  m.nrow = A->num_cols();
  m.ncol = A->num_rows();
  m.nzmax = A->num_nonzeros();
  m.nz = nullptr;
  m.p = reinterpret_cast<void*>(A->mutable_rows());
  m.i = reinterpret_cast<void*>(A->mutable_cols());
  m.x = reinterpret_cast<void*>(A->mutable_values());
  m.z = nullptr;

  if (A->storage_type() == CompressedRowSparseMatrix::LOWER_TRIANGULAR) {
    m.stype = 1;
  } else if (A->storage_type() == CompressedRowSparseMatrix::UPPER_TRIANGULAR) {
    m.stype = -1;
  } else {
    m.stype = 0;
  }

  m.itype = CHOLMOD_INT;
  m.xtype = CHOLMOD_REAL;
  m.dtype = CHOLMOD_DOUBLE;
  m.sorted = 1;
  m.packed = 1;

  return m;
}

cholmod_dense SuiteSparse::CreateDenseVectorView(const double* x, int size) {
  cholmod_dense v;
  v.nrow = size;
  v.ncol = 1;
  v.nzmax = size;
  v.d = size;
  v.x = const_cast<void*>(reinterpret_cast<const void*>(x));
  v.xtype = CHOLMOD_REAL;
  v.dtype = CHOLMOD_DOUBLE;
  return v;
}

cholmod_dense* SuiteSparse::CreateDenseVector(const double* x,
                                              int in_size,
                                              int out_size) {
  CHECK_LE(in_size, out_size);
  cholmod_dense* v = cholmod_zeros(out_size, 1, CHOLMOD_REAL, &cc_);
  if (x != nullptr) {
    memcpy(v->x, x, in_size * sizeof(*x));
  }
  return v;
}

cholmod_factor* SuiteSparse::AnalyzeCholesky(cholmod_sparse* A,
                                             string* message) {
  // Cholmod can try multiple re-ordering strategies to find a fill
  // reducing ordering. Here we just tell it use AMD with automatic
  // matrix dependence choice of supernodal versus simplicial
  // factorization.
  cc_.nmethods = 1;
  cc_.method[0].ordering = CHOLMOD_AMD;
  cc_.supernodal = CHOLMOD_AUTO;

  cholmod_factor* factor = cholmod_analyze(A, &cc_);
  if (VLOG_IS_ON(2)) {
    cholmod_print_common(const_cast<char*>("Symbolic Analysis"), &cc_);
  }

  if (cc_.status != CHOLMOD_OK) {
    *message =
        StringPrintf("cholmod_analyze failed. error code: %d", cc_.status);
    return nullptr;
  }

  CHECK(factor != nullptr);
  return factor;
}

cholmod_factor* SuiteSparse::BlockAnalyzeCholesky(cholmod_sparse* A,
                                                  const vector<int>& row_blocks,
                                                  const vector<int>& col_blocks,
                                                  string* message) {
  vector<int> ordering;
  if (!BlockAMDOrdering(A, row_blocks, col_blocks, &ordering)) {
    return nullptr;
  }
  return AnalyzeCholeskyWithUserOrdering(A, ordering, message);
}

cholmod_factor* SuiteSparse::AnalyzeCholeskyWithUserOrdering(
    cholmod_sparse* A, const vector<int>& ordering, string* message) {
  CHECK_EQ(ordering.size(), A->nrow);

  cc_.nmethods = 1;
  cc_.method[0].ordering = CHOLMOD_GIVEN;

  cholmod_factor* factor =
      cholmod_analyze_p(A, const_cast<int*>(&ordering[0]), nullptr, 0, &cc_);
  if (VLOG_IS_ON(2)) {
    cholmod_print_common(const_cast<char*>("Symbolic Analysis"), &cc_);
  }
  if (cc_.status != CHOLMOD_OK) {
    *message =
        StringPrintf("cholmod_analyze failed. error code: %d", cc_.status);
    return nullptr;
  }

  CHECK(factor != nullptr);
  return factor;
}

cholmod_factor* SuiteSparse::AnalyzeCholeskyWithNaturalOrdering(
    cholmod_sparse* A, string* message) {
  cc_.nmethods = 1;
  cc_.method[0].ordering = CHOLMOD_NATURAL;
  cc_.postorder = 0;

  cholmod_factor* factor = cholmod_analyze(A, &cc_);
  if (VLOG_IS_ON(2)) {
    cholmod_print_common(const_cast<char*>("Symbolic Analysis"), &cc_);
  }
  if (cc_.status != CHOLMOD_OK) {
    *message =
        StringPrintf("cholmod_analyze failed. error code: %d", cc_.status);
    return nullptr;
  }

  CHECK(factor != nullptr);
  return factor;
}

bool SuiteSparse::BlockAMDOrdering(const cholmod_sparse* A,
                                   const vector<int>& row_blocks,
                                   const vector<int>& col_blocks,
                                   vector<int>* ordering) {
  const int num_row_blocks = row_blocks.size();
  const int num_col_blocks = col_blocks.size();

  // Arrays storing the compressed column structure of the matrix
  // incoding the block sparsity of A.
  vector<int> block_cols;
  vector<int> block_rows;

  CompressedColumnScalarMatrixToBlockMatrix(reinterpret_cast<const int*>(A->i),
                                            reinterpret_cast<const int*>(A->p),
                                            row_blocks,
                                            col_blocks,
                                            &block_rows,
                                            &block_cols);
  cholmod_sparse_struct block_matrix;
  block_matrix.nrow = num_row_blocks;
  block_matrix.ncol = num_col_blocks;
  block_matrix.nzmax = block_rows.size();
  block_matrix.p = reinterpret_cast<void*>(&block_cols[0]);
  block_matrix.i = reinterpret_cast<void*>(&block_rows[0]);
  block_matrix.x = nullptr;
  block_matrix.stype = A->stype;
  block_matrix.itype = CHOLMOD_INT;
  block_matrix.xtype = CHOLMOD_PATTERN;
  block_matrix.dtype = CHOLMOD_DOUBLE;
  block_matrix.sorted = 1;
  block_matrix.packed = 1;

  vector<int> block_ordering(num_row_blocks);
  if (!cholmod_amd(&block_matrix, nullptr, 0, &block_ordering[0], &cc_)) {
    return false;
  }

  BlockOrderingToScalarOrdering(row_blocks, block_ordering, ordering);
  return true;
}

LinearSolverTerminationType SuiteSparse::Cholesky(cholmod_sparse* A,
                                                  cholmod_factor* L,
                                                  string* message) {
  CHECK(A != nullptr);
  CHECK(L != nullptr);

  // Save the current print level and silence CHOLMOD, otherwise
  // CHOLMOD is prone to dumping stuff to stderr, which can be
  // distracting when the error (matrix is indefinite) is not a fatal
  // failure.
  const int old_print_level = cc_.print;
  cc_.print = 0;

  cc_.quick_return_if_not_posdef = 1;
  int cholmod_status = cholmod_factorize(A, L, &cc_);
  cc_.print = old_print_level;

  switch (cc_.status) {
    case CHOLMOD_NOT_INSTALLED:
      *message = "CHOLMOD failure: Method not installed.";
      return LINEAR_SOLVER_FATAL_ERROR;
    case CHOLMOD_OUT_OF_MEMORY:
      *message = "CHOLMOD failure: Out of memory.";
      return LINEAR_SOLVER_FATAL_ERROR;
    case CHOLMOD_TOO_LARGE:
      *message = "CHOLMOD failure: Integer overflow occurred.";
      return LINEAR_SOLVER_FATAL_ERROR;
    case CHOLMOD_INVALID:
      *message = "CHOLMOD failure: Invalid input.";
      return LINEAR_SOLVER_FATAL_ERROR;
    case CHOLMOD_NOT_POSDEF:
      *message = "CHOLMOD warning: Matrix not positive definite.";
      return LINEAR_SOLVER_FAILURE;
    case CHOLMOD_DSMALL:
      *message =
          "CHOLMOD warning: D for LDL' or diag(L) or "
          "LL' has tiny absolute value.";
      return LINEAR_SOLVER_FAILURE;
    case CHOLMOD_OK:
      if (cholmod_status != 0) {
        return LINEAR_SOLVER_SUCCESS;
      }

      *message =
          "CHOLMOD failure: cholmod_factorize returned false "
          "but cholmod_common::status is CHOLMOD_OK."
          "Please report this to ceres-solver@googlegroups.com.";
      return LINEAR_SOLVER_FATAL_ERROR;
    default:
      *message = StringPrintf(
          "Unknown cholmod return code: %d. "
          "Please report this to ceres-solver@googlegroups.com.",
          cc_.status);
      return LINEAR_SOLVER_FATAL_ERROR;
  }

  return LINEAR_SOLVER_FATAL_ERROR;
}

cholmod_dense* SuiteSparse::Solve(cholmod_factor* L,
                                  cholmod_dense* b,
                                  string* message) {
  if (cc_.status != CHOLMOD_OK) {
    *message = "cholmod_solve failed. CHOLMOD status is not CHOLMOD_OK";
    return nullptr;
  }

  return cholmod_solve(CHOLMOD_A, L, b, &cc_);
}

bool SuiteSparse::ApproximateMinimumDegreeOrdering(cholmod_sparse* matrix,
                                                   int* ordering) {
  return cholmod_amd(matrix, nullptr, 0, ordering, &cc_);
}

bool SuiteSparse::ConstrainedApproximateMinimumDegreeOrdering(
    cholmod_sparse* matrix, int* constraints, int* ordering) {
#ifndef CERES_NO_CAMD
  return cholmod_camd(matrix, nullptr, 0, constraints, ordering, &cc_);
#else
  LOG(FATAL) << "Congratulations you have found a bug in Ceres."
             << "Ceres Solver was compiled with SuiteSparse "
             << "version 4.1.0 or less. Calling this function "
             << "in that case is a bug. Please contact the"
             << "the Ceres Solver developers.";
  return false;
#endif
}

std::unique_ptr<SparseCholesky> SuiteSparseCholesky::Create(
    const OrderingType ordering_type) {
  return std::unique_ptr<SparseCholesky>(
      new SuiteSparseCholesky(ordering_type));
}

SuiteSparseCholesky::SuiteSparseCholesky(const OrderingType ordering_type)
    : ordering_type_(ordering_type), factor_(nullptr) {}

SuiteSparseCholesky::~SuiteSparseCholesky() {
  if (factor_ != nullptr) {
    ss_.Free(factor_);
  }
}

LinearSolverTerminationType SuiteSparseCholesky::Factorize(
    CompressedRowSparseMatrix* lhs, string* message) {
  if (lhs == nullptr) {
    *message = "Failure: Input lhs is nullptr.";
    return LINEAR_SOLVER_FATAL_ERROR;
  }

  cholmod_sparse cholmod_lhs = ss_.CreateSparseMatrixTransposeView(lhs);

  if (factor_ == nullptr) {
    if (ordering_type_ == NATURAL) {
      factor_ = ss_.AnalyzeCholeskyWithNaturalOrdering(&cholmod_lhs, message);
    } else {
      if (!lhs->col_blocks().empty() && !(lhs->row_blocks().empty())) {
        factor_ = ss_.BlockAnalyzeCholesky(
            &cholmod_lhs, lhs->col_blocks(), lhs->row_blocks(), message);
      } else {
        factor_ = ss_.AnalyzeCholesky(&cholmod_lhs, message);
      }
    }

    if (factor_ == nullptr) {
      return LINEAR_SOLVER_FATAL_ERROR;
    }
  }

  return ss_.Cholesky(&cholmod_lhs, factor_, message);
}

CompressedRowSparseMatrix::StorageType SuiteSparseCholesky::StorageType()
    const {
  return ((ordering_type_ == NATURAL)
              ? CompressedRowSparseMatrix::UPPER_TRIANGULAR
              : CompressedRowSparseMatrix::LOWER_TRIANGULAR);
}

LinearSolverTerminationType SuiteSparseCholesky::Solve(const double* rhs,
                                                       double* solution,
                                                       string* message) {
  // Error checking
  if (factor_ == nullptr) {
    *message = "Solve called without a call to Factorize first.";
    return LINEAR_SOLVER_FATAL_ERROR;
  }

  const int num_cols = factor_->n;
  cholmod_dense cholmod_rhs = ss_.CreateDenseVectorView(rhs, num_cols);
  cholmod_dense* cholmod_dense_solution =
      ss_.Solve(factor_, &cholmod_rhs, message);

  if (cholmod_dense_solution == nullptr) {
    return LINEAR_SOLVER_FAILURE;
  }

  memcpy(solution, cholmod_dense_solution->x, num_cols * sizeof(*solution));
  ss_.Free(cholmod_dense_solution);
  return LINEAR_SOLVER_SUCCESS;
}

}  // namespace internal
}  // namespace ceres

#endif  // CERES_NO_SUITESPARSE