Welcome to mirror list, hosted at ThFree Co, Russian Federation.

suitesparse.h « ceres « internal « ceres « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: b77b296a66e5ace2308fb5c09d58394889f6aa5b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2017 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
//   this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
//   this list of conditions and the following disclaimer in the documentation
//   and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
//   used to endorse or promote products derived from this software without
//   specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)
//
// A simple C++ interface to the SuiteSparse and CHOLMOD libraries.

#ifndef CERES_INTERNAL_SUITESPARSE_H_
#define CERES_INTERNAL_SUITESPARSE_H_

// This include must come before any #ifndef check on Ceres compile options.
#include "ceres/internal/port.h"

#ifndef CERES_NO_SUITESPARSE

#include <cstring>
#include <string>
#include <vector>
#include "SuiteSparseQR.hpp"
#include "ceres/linear_solver.h"
#include "ceres/sparse_cholesky.h"
#include "cholmod.h"
#include "glog/logging.h"

// Before SuiteSparse version 4.2.0, cholmod_camd was only enabled
// if SuiteSparse was compiled with Metis support. This makes
// calling and linking into cholmod_camd problematic even though it
// has nothing to do with Metis. This has been fixed reliably in
// 4.2.0.
//
// The fix was actually committed in 4.1.0, but there is
// some confusion about a silent update to the tar ball, so we are
// being conservative and choosing the next minor version where
// things are stable.
#if (SUITESPARSE_VERSION < 4002)
#define CERES_NO_CAMD
#endif

// UF_long is deprecated but SuiteSparse_long is only available in
// newer versions of SuiteSparse. So for older versions of
// SuiteSparse, we define SuiteSparse_long to be the same as UF_long,
// which is what recent versions of SuiteSparse do anyways.
#ifndef SuiteSparse_long
#define SuiteSparse_long UF_long
#endif

namespace ceres {
namespace internal {

class CompressedRowSparseMatrix;
class TripletSparseMatrix;

// The raw CHOLMOD and SuiteSparseQR libraries have a slightly
// cumbersome c like calling format. This object abstracts it away and
// provides the user with a simpler interface. The methods here cannot
// be static as a cholmod_common object serves as a global variable
// for all cholmod function calls.
class SuiteSparse {
 public:
  SuiteSparse();
  ~SuiteSparse();

  // Functions for building cholmod_sparse objects from sparse
  // matrices stored in triplet form. The matrix A is not
  // modifed. Called owns the result.
  cholmod_sparse* CreateSparseMatrix(TripletSparseMatrix* A);

  // This function works like CreateSparseMatrix, except that the
  // return value corresponds to A' rather than A.
  cholmod_sparse* CreateSparseMatrixTranspose(TripletSparseMatrix* A);

  // Create a cholmod_sparse wrapper around the contents of A. This is
  // a shallow object, which refers to the contents of A and does not
  // use the SuiteSparse machinery to allocate memory.
  cholmod_sparse CreateSparseMatrixTransposeView(CompressedRowSparseMatrix* A);

  // Create a cholmod_dense vector around the contents of the array x.
  // This is a shallow object, which refers to the contents of x and
  // does not use the SuiteSparse machinery to allocate memory.
  cholmod_dense CreateDenseVectorView(const double* x, int size);

  // Given a vector x, build a cholmod_dense vector of size out_size
  // with the first in_size entries copied from x. If x is NULL, then
  // an all zeros vector is returned. Caller owns the result.
  cholmod_dense* CreateDenseVector(const double* x, int in_size, int out_size);

  // The matrix A is scaled using the matrix whose diagonal is the
  // vector scale. mode describes how scaling is applied. Possible
  // values are CHOLMOD_ROW for row scaling - diag(scale) * A,
  // CHOLMOD_COL for column scaling - A * diag(scale) and CHOLMOD_SYM
  // for symmetric scaling which scales both the rows and the columns
  // - diag(scale) * A * diag(scale).
  void Scale(cholmod_dense* scale, int mode, cholmod_sparse* A) {
     cholmod_scale(scale, mode, A, &cc_);
  }

  // Create and return a matrix m = A * A'. Caller owns the
  // result. The matrix A is not modified.
  cholmod_sparse* AATranspose(cholmod_sparse* A) {
    cholmod_sparse*m =  cholmod_aat(A, NULL, A->nrow, 1, &cc_);
    m->stype = 1;  // Pay attention to the upper triangular part.
    return m;
  }

  // y = alpha * A * x + beta * y. Only y is modified.
  void SparseDenseMultiply(cholmod_sparse* A, double alpha, double beta,
                           cholmod_dense* x, cholmod_dense* y) {
    double alpha_[2] = {alpha, 0};
    double beta_[2] = {beta, 0};
    cholmod_sdmult(A, 0, alpha_, beta_, x, y, &cc_);
  }

  // Find an ordering of A or AA' (if A is unsymmetric) that minimizes
  // the fill-in in the Cholesky factorization of the corresponding
  // matrix. This is done by using the AMD algorithm.
  //
  // Using this ordering, the symbolic Cholesky factorization of A (or
  // AA') is computed and returned.
  //
  // A is not modified, only the pattern of non-zeros of A is used,
  // the actual numerical values in A are of no consequence.
  //
  // message contains an explanation of the failures if any.
  //
  // Caller owns the result.
  cholmod_factor* AnalyzeCholesky(cholmod_sparse* A, std::string* message);

  cholmod_factor* BlockAnalyzeCholesky(cholmod_sparse* A,
                                       const std::vector<int>& row_blocks,
                                       const std::vector<int>& col_blocks,
                                       std::string* message);

  // If A is symmetric, then compute the symbolic Cholesky
  // factorization of A(ordering, ordering). If A is unsymmetric, then
  // compute the symbolic factorization of
  // A(ordering,:) A(ordering,:)'.
  //
  // A is not modified, only the pattern of non-zeros of A is used,
  // the actual numerical values in A are of no consequence.
  //
  // message contains an explanation of the failures if any.
  //
  // Caller owns the result.
  cholmod_factor* AnalyzeCholeskyWithUserOrdering(
      cholmod_sparse* A,
      const std::vector<int>& ordering,
      std::string* message);

  // Perform a symbolic factorization of A without re-ordering A. No
  // postordering of the elimination tree is performed. This ensures
  // that the symbolic factor does not introduce an extra permutation
  // on the matrix. See the documentation for CHOLMOD for more details.
  //
  // message contains an explanation of the failures if any.
  cholmod_factor* AnalyzeCholeskyWithNaturalOrdering(cholmod_sparse* A,
                                                     std::string* message);

  // Use the symbolic factorization in L, to find the numerical
  // factorization for the matrix A or AA^T. Return true if
  // successful, false otherwise. L contains the numeric factorization
  // on return.
  //
  // message contains an explanation of the failures if any.
  LinearSolverTerminationType Cholesky(cholmod_sparse* A,
                                       cholmod_factor* L,
                                       std::string* message);

  // Given a Cholesky factorization of a matrix A = LL^T, solve the
  // linear system Ax = b, and return the result. If the Solve fails
  // NULL is returned. Caller owns the result.
  //
  // message contains an explanation of the failures if any.
  cholmod_dense* Solve(cholmod_factor* L, cholmod_dense* b, std::string* message);

  // By virtue of the modeling layer in Ceres being block oriented,
  // all the matrices used by Ceres are also block oriented. When
  // doing sparse direct factorization of these matrices the
  // fill-reducing ordering algorithms (in particular AMD) can either
  // be run on the block or the scalar form of these matrices. The two
  // SuiteSparse::AnalyzeCholesky methods allows the client to
  // compute the symbolic factorization of a matrix by either using
  // AMD on the matrix or a user provided ordering of the rows.
  //
  // But since the underlying matrices are block oriented, it is worth
  // running AMD on just the block structure of these matrices and then
  // lifting these block orderings to a full scalar ordering. This
  // preserves the block structure of the permuted matrix, and exposes
  // more of the super-nodal structure of the matrix to the numerical
  // factorization routines.
  //
  // Find the block oriented AMD ordering of a matrix A, whose row and
  // column blocks are given by row_blocks, and col_blocks
  // respectively. The matrix may or may not be symmetric. The entries
  // of col_blocks do not need to sum to the number of columns in
  // A. If this is the case, only the first sum(col_blocks) are used
  // to compute the ordering.
  bool BlockAMDOrdering(const cholmod_sparse* A,
                        const std::vector<int>& row_blocks,
                        const std::vector<int>& col_blocks,
                        std::vector<int>* ordering);

  // Find a fill reducing approximate minimum degree
  // ordering. ordering is expected to be large enough to hold the
  // ordering.
  bool ApproximateMinimumDegreeOrdering(cholmod_sparse* matrix, int* ordering);


  // Before SuiteSparse version 4.2.0, cholmod_camd was only enabled
  // if SuiteSparse was compiled with Metis support. This makes
  // calling and linking into cholmod_camd problematic even though it
  // has nothing to do with Metis. This has been fixed reliably in
  // 4.2.0.
  //
  // The fix was actually committed in 4.1.0, but there is
  // some confusion about a silent update to the tar ball, so we are
  // being conservative and choosing the next minor version where
  // things are stable.
  static bool IsConstrainedApproximateMinimumDegreeOrderingAvailable() {
    return (SUITESPARSE_VERSION > 4001);
  }

  // Find a fill reducing approximate minimum degree
  // ordering. constraints is an array which associates with each
  // column of the matrix an elimination group. i.e., all columns in
  // group 0 are eliminated first, all columns in group 1 are
  // eliminated next etc. This function finds a fill reducing ordering
  // that obeys these constraints.
  //
  // Calling ApproximateMinimumDegreeOrdering is equivalent to calling
  // ConstrainedApproximateMinimumDegreeOrdering with a constraint
  // array that puts all columns in the same elimination group.
  //
  // If CERES_NO_CAMD is defined then calling this function will
  // result in a crash.
  bool ConstrainedApproximateMinimumDegreeOrdering(cholmod_sparse* matrix,
                                                   int* constraints,
                                                   int* ordering);

  void Free(cholmod_sparse* m) { cholmod_free_sparse(&m, &cc_); }
  void Free(cholmod_dense* m)  { cholmod_free_dense(&m, &cc_);  }
  void Free(cholmod_factor* m) { cholmod_free_factor(&m, &cc_); }

  void Print(cholmod_sparse* m, const std::string& name) {
    cholmod_print_sparse(m, const_cast<char*>(name.c_str()), &cc_);
  }

  void Print(cholmod_dense* m, const std::string& name) {
    cholmod_print_dense(m, const_cast<char*>(name.c_str()), &cc_);
  }

  void Print(cholmod_triplet* m, const std::string& name) {
    cholmod_print_triplet(m, const_cast<char*>(name.c_str()), &cc_);
  }

  cholmod_common* mutable_cc() { return &cc_; }

 private:
  cholmod_common cc_;
};

class SuiteSparseCholesky : public SparseCholesky {
 public:
  static std::unique_ptr<SparseCholesky> Create(
      OrderingType ordering_type);

  // SparseCholesky interface.
  virtual ~SuiteSparseCholesky();
  CompressedRowSparseMatrix::StorageType StorageType() const final;
  LinearSolverTerminationType Factorize(
      CompressedRowSparseMatrix* lhs, std::string* message) final;
  LinearSolverTerminationType Solve(const double* rhs,
                                    double* solution,
                                    std::string* message) final;
 private:
  SuiteSparseCholesky(const OrderingType ordering_type);

  const OrderingType ordering_type_;
  SuiteSparse ss_;
  cholmod_factor* factor_;
};

}  // namespace internal
}  // namespace ceres

#else  // CERES_NO_SUITESPARSE

typedef void cholmod_factor;

namespace ceres {
namespace internal {

class SuiteSparse {
 public:
  // Defining this static function even when SuiteSparse is not
  // available, allows client code to check for the presence of CAMD
  // without checking for the absence of the CERES_NO_CAMD symbol.
  //
  // This is safer because the symbol maybe missing due to a user
  // accidentally not including suitesparse.h in their code when
  // checking for the symbol.
  static bool IsConstrainedApproximateMinimumDegreeOrderingAvailable() {
    return false;
  }

  void Free(void* arg) {}
};

}  // namespace internal
}  // namespace ceres

#endif  // CERES_NO_SUITESPARSE

#endif  // CERES_INTERNAL_SUITESPARSE_H_