Welcome to mirror list, hosted at ThFree Co, Russian Federation.

curve_fit_cubic.c « intern « curve_fit_nd « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 810cf92760d539198865142518e32e14cfb5d7a1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
/*
 * Copyright (c) 2016, DWANGO Co., Ltd.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in the
 *       documentation and/or other materials provided with the distribution.
 *     * Neither the name of the <organization> nor the
 *       names of its contributors may be used to endorse or promote products
 *       derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/** \file curve_fit_cubic.c
 *  \ingroup curve_fit
 */

#include <math.h>
#include <float.h>
#include <stdbool.h>
#include <assert.h>

#include <string.h>
#include <stdlib.h>

#include "../curve_fit_nd.h"

/* avoid re-calculating lengths multiple times */
#define USE_LENGTH_CACHE

/* store the indices in the cubic data so we can return the original indices,
 * useful when the caller has data assosiated with the curve. */
#define USE_ORIG_INDEX_DATA

typedef unsigned int uint;

#include "curve_fit_inline.h"

#ifdef _MSC_VER
#  define alloca(size) _alloca(size)
#endif

#if !defined(_MSC_VER)
#  define USE_VLA
#endif

#ifdef USE_VLA
#  ifdef __GNUC__
#    pragma GCC diagnostic ignored "-Wvla"
#  endif
#else
#  ifdef __GNUC__
#    pragma GCC diagnostic error "-Wvla"
#  endif
#endif

#define SWAP(type, a, b)  {    \
	type sw_ap;                \
	sw_ap = (a);               \
	(a) = (b);                 \
	(b) = sw_ap;               \
} (void)0


/* -------------------------------------------------------------------- */

/** \name Cubic Type & Functions
 * \{ */

typedef struct Cubic {
	/* single linked lists */
	struct Cubic *next;
#ifdef USE_ORIG_INDEX_DATA
	uint orig_span;
#endif
	/* 0: point_0, 1: handle_0, 2: handle_1, 3: point_1,
	 * each one is offset by 'dims' */
	double pt_data[0];
} Cubic;

#define CUBIC_PT(cubic, index, dims) \
	(&(cubic)->pt_data[(index) * (dims)])

#define CUBIC_VARS(c, dims, _p0, _p1, _p2, _p3) \
	double \
	*_p0 = (c)->pt_data, \
	*_p1 = _p0 + (dims), \
	*_p2 = _p1 + (dims), \
	*_p3 = _p2 + (dims); ((void)0)
#define CUBIC_VARS_CONST(c, dims, _p0, _p1, _p2, _p3) \
	const double \
	*_p0 = (c)->pt_data, \
	*_p1 = _p0 + (dims), \
	*_p2 = _p1 + (dims), \
	*_p3 = _p2 + (dims); ((void)0)


static Cubic *cubic_alloc(const uint dims)
{
	return malloc(sizeof(Cubic) + (sizeof(double) * 4 * dims));
}

static void cubic_init(
        Cubic *cubic,
        const double p0[], const double p1[], const double p2[], const double p3[],
        const uint dims)
{
	copy_vnvn(CUBIC_PT(cubic, 0, dims), p0, dims);
	copy_vnvn(CUBIC_PT(cubic, 1, dims), p1, dims);
	copy_vnvn(CUBIC_PT(cubic, 2, dims), p2, dims);
	copy_vnvn(CUBIC_PT(cubic, 3, dims), p3, dims);
}

static void cubic_free(Cubic *cubic)
{
	free(cubic);
}

/** \} */


/* -------------------------------------------------------------------- */

/** \name CubicList Type & Functions
 * \{ */

typedef struct CubicList {
	struct Cubic *items;
	uint          len;
	uint          dims;
} CubicList;

static void cubic_list_prepend(CubicList *clist, Cubic *cubic)
{
	cubic->next = clist->items;
	clist->items = cubic;
	clist->len++;
}

static double *cubic_list_as_array(
        const CubicList *clist
#ifdef USE_ORIG_INDEX_DATA
        ,
        const uint index_last,
        uint *r_orig_index
#endif
        )
{
	const uint dims = clist->dims;
	const uint array_flat_len = (clist->len + 1) * 3 * dims;

	double *array = malloc(sizeof(double) * array_flat_len);
	const double *handle_prev = &((Cubic *)clist->items)->pt_data[dims];

#ifdef USE_ORIG_INDEX_DATA
	uint orig_index_value = index_last;
	uint orig_index_index = clist->len;
	bool use_orig_index = (r_orig_index != NULL);
#endif

	/* fill the array backwards */
	const size_t array_chunk = 3 * dims;
	double *array_iter = array + array_flat_len;
	for (Cubic *citer = clist->items; citer; citer = citer->next) {
		array_iter -= array_chunk;
		memcpy(array_iter, &citer->pt_data[2 * dims], sizeof(double) * 2 * dims);
		memcpy(&array_iter[2 * dims], &handle_prev[dims], sizeof(double) * dims);
		handle_prev = citer->pt_data;

#ifdef USE_ORIG_INDEX_DATA
		if (use_orig_index) {
			r_orig_index[orig_index_index--] = orig_index_value;
			orig_index_value -= citer->orig_span;
		}
#endif
	}

#ifdef USE_ORIG_INDEX_DATA
	if (use_orig_index) {
		assert(orig_index_index == 0);
		assert(orig_index_value == 0 || index_last == 0);
		r_orig_index[orig_index_index] = index_last ? orig_index_value : 0;

	}
#endif

	/* flip tangent for first and last (we could leave at zero, but set to something useful) */

	/* first */
	array_iter -= array_chunk;
	memcpy(&array_iter[dims], handle_prev, sizeof(double) * 2 * dims);
	flip_vn_vnvn(&array_iter[0 * dims], &array_iter[1 * dims], &array_iter[2 * dims], dims);
	assert(array == array_iter);

	/* last */
	array_iter += array_flat_len - (3 * dims);
	flip_vn_vnvn(&array_iter[2 * dims], &array_iter[1 * dims], &array_iter[0 * dims], dims);

	return array;
}

static void cubic_list_clear(CubicList *clist)
{
	Cubic *cubic_next;
	for (Cubic *citer = clist->items; citer; citer = cubic_next) {
		cubic_next = citer->next;
		cubic_free(citer);
	}
	clist->items = NULL;
	clist->len  = 0;
}

/** \} */


/* -------------------------------------------------------------------- */

/** \name Cubic Evaluation
 * \{ */

static void cubic_evaluate(
        const Cubic *cubic, const double t, const uint dims,
        double r_v[])
{
	CUBIC_VARS_CONST(cubic, dims, p0, p1, p2, p3);
	const double s = 1.0 - t;

	for (uint j = 0; j < dims; j++) {
		const double p01 = (p0[j] * s) + (p1[j] * t);
		const double p12 = (p1[j] * s) + (p2[j] * t);
		const double p23 = (p2[j] * s) + (p3[j] * t);
		r_v[j] = ((((p01 * s) + (p12 * t))) * s) +
		         ((((p12 * s) + (p23 * t))) * t);
	}
}

static void cubic_calc_point(
        const Cubic *cubic, const double t, const uint dims,
        double r_v[])
{
	CUBIC_VARS_CONST(cubic, dims, p0, p1, p2, p3);
	const double s = 1.0 - t;
	for (uint j = 0; j < dims; j++) {
		r_v[j] = p0[j] * s * s * s +
		         3.0 * t * s * (s * p1[j] + t * p2[j]) + t * t * t * p3[j];
	}
}

static void cubic_calc_speed(
        const Cubic *cubic, const double t, const uint dims,
        double r_v[])
{
	CUBIC_VARS_CONST(cubic, dims, p0, p1, p2, p3);
	const double s = 1.0 - t;
	for (uint j = 0; j < dims; j++) {
		r_v[j] =  3.0 * ((p1[j] - p0[j]) * s * s + 2.0 *
		                 (p2[j] - p0[j]) * s * t +
		                 (p3[j] - p2[j]) * t * t);
	}
}

static void cubic_calc_acceleration(
        const Cubic *cubic, const double t, const uint dims,
        double r_v[])
{
	CUBIC_VARS_CONST(cubic, dims, p0, p1, p2, p3);
    const double s = 1.0 - t;
	for (uint j = 0; j < dims; j++) {
		r_v[j] = 6.0 * ((p2[j] - 2.0 * p1[j] + p0[j]) * s +
		                (p3[j] - 2.0 * p2[j] + p1[j]) * t);
	}
}

/**
 * Returns a 'measure' of the maximal discrepancy of the points specified
 * by points_offset from the corresponding cubic(u[]) points.
 */
static void cubic_calc_error(
        const Cubic *cubic,
        const double *points_offset,
        const uint points_offset_len,
        const double *u,
        const uint dims,

        double *r_error_sq_max,
        uint *r_error_index)
{
	double error_sq_max = 0.0;
	uint   error_index = 0;

	const double *pt_real = points_offset + dims;
#ifdef USE_VLA
	double        pt_eval[dims];
#else
	double       *pt_eval = alloca(sizeof(double) * dims);
#endif

	for (uint i = 1; i < points_offset_len - 1; i++, pt_real += dims) {
		cubic_evaluate(cubic, u[i], dims, pt_eval);

		const double err_sq = len_squared_vnvn(pt_real, pt_eval, dims);
		if (err_sq >= error_sq_max) {
			error_sq_max = err_sq;
			error_index = i;
		}
	}

	*r_error_sq_max   = error_sq_max;
	*r_error_index = error_index;
}

/**
 * Bezier multipliers
 */

static double B1(double u)
{
	double tmp = 1.0 - u;
	return 3.0 * u * tmp * tmp;
}

static double B2(double u)
{
	return 3.0 * u * u * (1.0 - u);
}

static double B0plusB1(double u)
{
    double tmp = 1.0 - u;
    return tmp * tmp * (1.0 + 2.0 * u);
}

static double B2plusB3(double u)
{
    return u * u * (3.0 - 2.0 * u);
}

static void points_calc_center_weighted(
        const double *points_offset,
        const uint    points_offset_len,
        const uint    dims,

        double r_center[])
{
	/*
	 * Calculate a center that compensates for point spacing.
	 */

	const double *pt_prev = &points_offset[(points_offset_len - 2) * dims];
	const double *pt_curr = pt_prev + dims;
	const double *pt_next = points_offset;

	double w_prev = len_vnvn(pt_prev, pt_curr, dims);

	zero_vn(r_center, dims);
	double w_tot = 0.0;

	for (uint i_next = 0; i_next < points_offset_len; i_next++) {
		const double w_next = len_vnvn(pt_curr, pt_next, dims);
		const double w = w_prev + w_next;
		w_tot += w;

		miadd_vn_vn_fl(r_center, pt_curr, w, dims);

		w_prev = w_next;

		pt_prev = pt_curr;
		pt_curr = pt_next;
		pt_next += dims;
	}

	if (w_tot != 0.0) {
		imul_vn_fl(r_center, 1.0 / w_tot, dims);
	}
}

/**
 * Use least-squares method to find Bezier control points for region.
 */
static void cubic_from_points(
        const double *points_offset,
        const uint    points_offset_len,
        const double *u_prime,
        const double  tan_l[],
        const double  tan_r[],
        const uint dims,

        Cubic *r_cubic)
{

	const double *p0 = &points_offset[0];
	const double *p3 = &points_offset[(points_offset_len - 1) * dims];

	/* Point Pairs */
	double alpha_l, alpha_r;
#ifdef USE_VLA
	double a[2][dims];
	double tmp[dims];
#else
	double *a[2] = {
	    alloca(sizeof(double) * dims),
	    alloca(sizeof(double) * dims),
	};
	double *tmp = alloca(sizeof(double) * dims);
#endif

	{
		double x[2] = {0.0}, c[2][2] = {{0.0}};
		const double *pt = points_offset;

		for (uint i = 0; i < points_offset_len; i++, pt += dims) {
			mul_vnvn_fl(a[0], tan_l, B1(u_prime[i]), dims);
			mul_vnvn_fl(a[1], tan_r, B2(u_prime[i]), dims);

			c[0][0] += dot_vnvn(a[0], a[0], dims);
			c[0][1] += dot_vnvn(a[0], a[1], dims);
			c[1][1] += dot_vnvn(a[1], a[1], dims);

			c[1][0] = c[0][1];

			{
				const double b0_plus_b1 = B0plusB1(u_prime[i]);
				const double b2_plus_b3 = B2plusB3(u_prime[i]);
				for (uint j = 0; j < dims; j++) {
					tmp[j] = (pt[j] - (p0[j] * b0_plus_b1)) + (p3[j] * b2_plus_b3);
				}

				x[0] += dot_vnvn(a[0], tmp, dims);
				x[1] += dot_vnvn(a[1], tmp, dims);
			}
		}

		double det_C0_C1 = c[0][0] * c[1][1] - c[0][1] * c[1][0];
		double det_C_0X  = x[1]    * c[0][0] - x[0]    * c[0][1];
		double det_X_C1  = x[0]    * c[1][1] - x[1]    * c[0][1];

		if (is_almost_zero(det_C0_C1)) {
			det_C0_C1 = c[0][0] * c[1][1] * 10e-12;
		}

		/* may still divide-by-zero, check below will catch nan values */
		alpha_l = det_X_C1 / det_C0_C1;
		alpha_r = det_C_0X / det_C0_C1;
	}

	/*
	 * The problem that the stupid values for alpha dare not put
	 * only when we realize that the sign and wrong,
	 * but even if the values are too high.
	 * But how do you evaluate it?
	 *
	 * Meanwhile, we should ensure that these values are sometimes
	 * so only problems absurd of approximation and not for bugs in the code.
	 */

	/* flip check to catch nan values */
	if (!(alpha_l >= 0.0) ||
	    !(alpha_r >= 0.0))
	{
		alpha_l = alpha_r = len_vnvn(p0, p3, dims) / 3.0;
	}

	double *p1 = CUBIC_PT(r_cubic, 1, dims);
	double *p2 = CUBIC_PT(r_cubic, 2, dims);

	copy_vnvn(CUBIC_PT(r_cubic, 0, dims), p0, dims);
	copy_vnvn(CUBIC_PT(r_cubic, 3, dims), p3, dims);

#ifdef USE_ORIG_INDEX_DATA
	r_cubic->orig_span = (points_offset_len - 1);
#endif

	/* p1 = p0 - (tan_l * alpha_l);
	 * p2 = p3 + (tan_r * alpha_r);
	 */
	msub_vn_vnvn_fl(p1, p0, tan_l, alpha_l, dims);
	madd_vn_vnvn_fl(p2, p3, tan_r, alpha_r, dims);

	/* ------------------------------------
	 * Clamping (we could make it optional)
	 */
#ifdef USE_VLA
	double center[dims];
#else
	double *center = alloca(sizeof(double) * dims);
#endif
	points_calc_center_weighted(points_offset, points_offset_len, dims, center);

	const double clamp_scale = 3.0;  /* clamp to 3x */
	double dist_sq_max = 0.0;

	{
		const double *pt = points_offset;
		for (uint i = 0; i < points_offset_len; i++, pt += dims) {
#if 0
			double dist_sq_test = sq(len_vnvn(center, pt, dims) * clamp_scale);
#else
			/* do inline */
			double dist_sq_test = 0.0;
			for (uint j = 0; j < dims; j++) {
				dist_sq_test += sq((pt[j] - center[j]) * clamp_scale);
			}
#endif
			dist_sq_max = max(dist_sq_max, dist_sq_test);
		}
	}

	double p1_dist_sq = len_squared_vnvn(center, p1, dims);
	double p2_dist_sq = len_squared_vnvn(center, p2, dims);

	if (p1_dist_sq > dist_sq_max ||
	    p2_dist_sq > dist_sq_max)
	{

		alpha_l = alpha_r = len_vnvn(p0, p3, dims) / 3.0;

		/*
		 * p1 = p0 - (tan_l * alpha_l);
		 * p2 = p3 + (tan_r * alpha_r);
		 */
		for (uint j = 0; j < dims; j++) {
			p1[j] = p0[j] - (tan_l[j] * alpha_l);
			p2[j] = p3[j] + (tan_r[j] * alpha_r);
		}

		p1_dist_sq = len_squared_vnvn(center, p1, dims);
		p2_dist_sq = len_squared_vnvn(center, p2, dims);
	}

	/* clamp within the 3x radius */
	if (p1_dist_sq > dist_sq_max) {
		isub_vnvn(p1, center, dims);
		imul_vn_fl(p1, sqrt(dist_sq_max) / sqrt(p1_dist_sq), dims);
		iadd_vnvn(p1, center, dims);
	}
	if (p2_dist_sq > dist_sq_max) {
		isub_vnvn(p2, center, dims);
		imul_vn_fl(p2, sqrt(dist_sq_max) / sqrt(p2_dist_sq), dims);
		iadd_vnvn(p2, center, dims);
	}
	/* end clamping */
}

#ifdef USE_LENGTH_CACHE
static void points_calc_coord_length_cache(
        const double *points_offset,
        const uint    points_offset_len,
        const uint    dims,

        double     *r_points_length_cache)
{
	const double *pt_prev = points_offset;
	const double *pt = pt_prev + dims;
	r_points_length_cache[0] = 0.0;
	for (uint i = 1; i < points_offset_len; i++) {
		r_points_length_cache[i] = len_vnvn(pt, pt_prev, dims);
		pt_prev = pt;
		pt += dims;
	}
}
#endif  /* USE_LENGTH_CACHE */


static void points_calc_coord_length(
        const double *points_offset,
        const uint    points_offset_len,
        const uint    dims,
#ifdef USE_LENGTH_CACHE
        const double *points_length_cache,
#endif
        double *r_u)
{
	const double *pt_prev = points_offset;
	const double *pt = pt_prev + dims;
	r_u[0] = 0.0;
	for (uint i = 1, i_prev = 0; i < points_offset_len; i++) {
		double length;

#ifdef USE_LENGTH_CACHE
		length = points_length_cache[i];

		assert(len_vnvn(pt, pt_prev, dims) == points_length_cache[i]);
#else
		length = len_vnvn(pt, pt_prev, dims);
#endif

		r_u[i] = r_u[i_prev] + length;
		i_prev = i;
		pt_prev = pt;
		pt += dims;
	}
	assert(!is_almost_zero(r_u[points_offset_len - 1]));
	const double w = r_u[points_offset_len - 1];
	for (uint i = 0; i < points_offset_len; i++) {
		r_u[i] /= w;
	}
}

/**
 * Use Newton-Raphson iteration to find better root.
 *
 * \param cubic: Current fitted curve.
 * \param p: Point to test against.
 * \param u: Parameter value for \a p.
 *
 * \note Return value may be `nan` caller must check for this.
 */
static double cubic_find_root(
		const Cubic *cubic,
		const double p[],
		const double u,
		const uint dims)
{
	/* Newton-Raphson Method. */
	/* all vectors */
#ifdef USE_VLA
	double q0_u[dims];
	double q1_u[dims];
	double q2_u[dims];
#else
	double *q0_u = alloca(sizeof(double) * dims);
	double *q1_u = alloca(sizeof(double) * dims);
	double *q2_u = alloca(sizeof(double) * dims);
#endif

	cubic_calc_point(cubic, u, dims, q0_u);
	cubic_calc_speed(cubic, u, dims, q1_u);
	cubic_calc_acceleration(cubic, u, dims, q2_u);

	/* may divide-by-zero, caller must check for that case */
	/* u - ((q0_u - p) * q1_u) / (q1_u.length_squared() + (q0_u - p) * q2_u) */
	isub_vnvn(q0_u, p, dims);
	return u - dot_vnvn(q0_u, q1_u, dims) /
	       (len_squared_vn(q1_u, dims) + dot_vnvn(q0_u, q2_u, dims));
}

static int compare_double_fn(const void *a_, const void *b_)
{
	const double *a = a_;
	const double *b = b_;
	if      (*a > *b) return  1;
	else if (*a < *b) return -1;
	else              return  0;
}

/**
 * Given set of points and their parameterization, try to find a better parameterization.
 */
static bool cubic_reparameterize(
        const Cubic *cubic,
        const double *points_offset,
        const uint    points_offset_len,
        const double *u,
        const uint    dims,

        double       *r_u_prime)
{
	/*
	 * Recalculate the values of u[] based on the Newton Raphson method
	 */

	const double *pt = points_offset;
	for (uint i = 0; i < points_offset_len; i++, pt += dims) {
		r_u_prime[i] = cubic_find_root(cubic, pt, u[i], dims);
		if (!isfinite(r_u_prime[i])) {
			return false;
		}
	}

	qsort(r_u_prime, points_offset_len, sizeof(double), compare_double_fn);

	if ((r_u_prime[0] < 0.0) ||
	    (r_u_prime[points_offset_len - 1] > 1.0))
	{
		return false;
	}

	assert(r_u_prime[0] >= 0.0);
	assert(r_u_prime[points_offset_len - 1] <= 1.0);
	return true;
}


static void fit_cubic_to_points(
        const double *points_offset,
        const uint    points_offset_len,
#ifdef USE_LENGTH_CACHE
        const double *points_length_cache,
#endif
        const double  tan_l[],
        const double  tan_r[],
        const double  error_threshold,
        const uint    dims,
        /* fill in the list */
        CubicList *clist)
{
	const uint iteration_max = 4;
	const double error_sq = sq(error_threshold);

	Cubic *cubic;

	if (points_offset_len == 2) {
		cubic = cubic_alloc(dims);
		CUBIC_VARS(cubic, dims, p0, p1, p2, p3);

		copy_vnvn(p0, &points_offset[0 * dims], dims);
		copy_vnvn(p3, &points_offset[1 * dims], dims);

		const double dist = len_vnvn(p0, p3, dims) / 3.0;
		msub_vn_vnvn_fl(p1, p0, tan_l, dist, dims);
		madd_vn_vnvn_fl(p2, p3, tan_r, dist, dims);

#ifdef USE_ORIG_INDEX_DATA
		cubic->orig_span = 1;
#endif

		cubic_list_prepend(clist, cubic);
		return;
	}

	double *u = malloc(sizeof(double) * points_offset_len);
	points_calc_coord_length(
	        points_offset, points_offset_len, dims,
#ifdef USE_LENGTH_CACHE
	        points_length_cache,
#endif
	        u);

	cubic = cubic_alloc(dims);

	double error_sq_max;
	uint split_index;

	/* Parameterize points, and attempt to fit curve */
	cubic_from_points(
	        points_offset, points_offset_len, u, tan_l, tan_r, dims, cubic);

	/* Find max deviation of points to fitted curve */
	cubic_calc_error(
	        cubic, points_offset, points_offset_len, u, dims,
	        &error_sq_max, &split_index);

	if (error_sq_max < error_sq) {
		free(u);
		cubic_list_prepend(clist, cubic);
		return;
	}
	else {
		/* If error not too large, try some reparameterization and iteration */
		double *u_prime = malloc(sizeof(double) * points_offset_len);
		for (uint iter = 0; iter < iteration_max; iter++) {
			if (!cubic_reparameterize(
			        cubic, points_offset, points_offset_len, u, dims, u_prime))
			{
				break;
			}

			cubic_from_points(
			        points_offset, points_offset_len, u_prime,
			        tan_l, tan_r, dims, cubic);
			cubic_calc_error(
			        cubic, points_offset, points_offset_len, u_prime, dims,
			        &error_sq_max, &split_index);

			if (error_sq_max < error_sq) {
				free(u_prime);
				free(u);
				cubic_list_prepend(clist, cubic);
				return;
			}

			SWAP(double *, u, u_prime);
		}
		free(u_prime);
	}

	free(u);
	cubic_free(cubic);


	/* Fitting failed -- split at max error point and fit recursively */

	/* Check splinePoint is not an endpoint?
	 *
	 * This assert happens sometimes...
	 * Look into it but disable for now. Campbell! */

	// assert(split_index > 1)
#ifdef USE_VLA
	double tan_center[dims];
#else
	double *tan_center = alloca(sizeof(double) * dims);
#endif

	const double *pt_a = &points_offset[(split_index - 1) * dims];
	const double *pt_b = &points_offset[(split_index + 1) * dims];

	assert(split_index < points_offset_len);
	if (equals_vnvn(pt_a, pt_b, dims)) {
		pt_a += dims;
	}

	/* tan_center = (pt_a - pt_b).normalized() */
	normalize_vn_vnvn(tan_center, pt_a, pt_b, dims);

	fit_cubic_to_points(
	        points_offset, split_index + 1,
#ifdef USE_LENGTH_CACHE
	        points_length_cache,
#endif
	        tan_l, tan_center, error_threshold, dims, clist);
	fit_cubic_to_points(
	        &points_offset[split_index * dims], points_offset_len - split_index,
#ifdef USE_LENGTH_CACHE
	        points_length_cache + split_index,
#endif
	        tan_center, tan_r, error_threshold, dims, clist);

}

/** \} */


/* -------------------------------------------------------------------- */

/** \name External API for Curve-Fitting
 * \{ */

/**
 * Main function:
 *
 * Take an array of 3d points.
 * return the cubic splines
 */
int curve_fit_cubic_to_points_db(
        const double *points,
        const uint    points_len,
        const uint    dims,
        const double  error_threshold,
        const uint   *corners,
        uint          corners_len,

        double **r_cubic_array, uint *r_cubic_array_len,
        uint **r_cubic_orig_index,
        uint **r_corner_index_array, uint *r_corner_index_len)
{
	uint corners_buf[2];
	if (corners == NULL) {
		assert(corners_len == 0);
		corners_buf[0] = 0;
		corners_buf[1] = points_len - 1;
		corners = corners_buf;
		corners_len = 2;
	}

	CubicList clist = {0};
	clist.dims = dims;

#ifdef USE_VLA
	double tan_l[dims];
	double tan_r[dims];
#else
	double *tan_l = alloca(sizeof(double) * dims);
	double *tan_r = alloca(sizeof(double) * dims);
#endif

#ifdef USE_LENGTH_CACHE
	double *points_length_cache = NULL;
	uint    points_length_cache_len_alloc = 0;
#endif

	uint *corner_index_array = NULL;
	uint  corner_index = 0;
	if (r_corner_index_array && (corners != corners_buf)) {
		corner_index_array = malloc(sizeof(uint) * corners_len);
		corner_index_array[corner_index++] = corners[0];
	}

	for (uint i = 1; i < corners_len; i++) {
		const uint points_offset_len = corners[i] - corners[i - 1] + 1;
		const uint first_point = corners[i - 1];

		assert(points_offset_len >= 1);
		if (points_offset_len > 1) {
			const double *pt_l = &points[first_point * dims];
			const double *pt_r = &points[(first_point + points_offset_len - 1) * dims];
			const double *pt_l_next = pt_l + dims;
			const double *pt_r_prev = pt_r - dims;

			/* tan_l = (pt_l - pt_l_next).normalized()
			 * tan_r = (pt_r_prev - pt_r).normalized()
			 */
			normalize_vn_vnvn(tan_l, pt_l, pt_l_next, dims);
			normalize_vn_vnvn(tan_r, pt_r_prev, pt_r, dims);

#ifdef USE_LENGTH_CACHE
			if (points_length_cache_len_alloc < points_offset_len) {
				if (points_length_cache) {
					free(points_length_cache);
				}
				points_length_cache = malloc(sizeof(double) * points_offset_len);
			}
			points_calc_coord_length_cache(
			        &points[first_point * dims], points_offset_len, dims,
			        points_length_cache);
#endif

			fit_cubic_to_points(
			        &points[first_point * dims], points_offset_len,
#ifdef USE_LENGTH_CACHE
			        points_length_cache,
#endif
			        tan_l, tan_r, error_threshold, dims, &clist);
		}
		else if (points_len == 1) {
			assert(points_offset_len == 1);
			assert(corners_len == 2);
			assert(corners[0] == 0);
			assert(corners[1] == 0);
			const double *pt = &points[0];
			Cubic *cubic = cubic_alloc(dims);
			cubic_init(cubic, pt, pt, pt, pt, dims);
			cubic_list_prepend(&clist, cubic);
		}

		if (corner_index_array) {
			corner_index_array[corner_index++] = clist.len;
		}
	}

#ifdef USE_LENGTH_CACHE
	if (points_length_cache) {
		free(points_length_cache);
	}
#endif

#ifdef USE_ORIG_INDEX_DATA
	uint *cubic_orig_index = NULL;
	if (r_cubic_orig_index) {
		cubic_orig_index = malloc(sizeof(uint) * (clist.len + 1));
	}
#else
	*r_cubic_orig_index = NULL;
#endif

	/* allocate a contiguous array and free the linked list */
	*r_cubic_array = cubic_list_as_array(
	        &clist
#ifdef USE_ORIG_INDEX_DATA
	        , corners[corners_len - 1], cubic_orig_index
#endif
	        );
	*r_cubic_array_len = clist.len + 1;

	cubic_list_clear(&clist);

#ifdef USE_ORIG_INDEX_DATA
	if (cubic_orig_index) {
		*r_cubic_orig_index = cubic_orig_index;
	}
#endif

	if (corner_index_array) {
		assert(corner_index == corners_len);
		*r_corner_index_array = corner_index_array;
		*r_corner_index_len = corner_index;
	}

	return 0;
}

/**
 * A version of #curve_fit_cubic_to_points_db to handle floats
 */
int curve_fit_cubic_to_points_fl(
        const float  *points,
        const uint    points_len,
        const uint    dims,
        const float   error_threshold,
        const uint   *corners,
        const uint    corners_len,

        float **r_cubic_array, uint *r_cubic_array_len,
        uint **r_cubic_orig_index,
        uint **r_corner_index_array, uint *r_corner_index_len)
{
	const uint points_flat_len = points_len * dims;
	double *points_db = malloc(sizeof(double) * points_flat_len);

	for (uint i = 0; i < points_flat_len; i++) {
		points_db[i] = (double)points[i];
	}

	double *cubic_array_db = NULL;
	float  *cubic_array_fl = NULL;
	uint    cubic_array_len = 0;

	int result = curve_fit_cubic_to_points_db(
	        points_db, points_len, dims, error_threshold, corners, corners_len,
	        &cubic_array_db, &cubic_array_len,
	        r_cubic_orig_index,
	        r_corner_index_array, r_corner_index_len);
	free(points_db);

	if (!result) {
		uint cubic_array_flat_len = cubic_array_len * 3 * dims;
		cubic_array_fl = malloc(sizeof(float) * cubic_array_flat_len);
		for (uint i = 0; i < cubic_array_flat_len; i++) {
			cubic_array_fl[i] = (float)cubic_array_db[i];
		}
		free(cubic_array_db);
	}

	*r_cubic_array = cubic_array_fl;
	*r_cubic_array_len = cubic_array_len;

	return result;
}

/** \} */