Welcome to mirror list, hosted at ThFree Co, Russian Federation.

rans_symbol_encoder.h « entropy « compression « draco « src « draco « draco « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 4b738b50a9d3713ed4b6281cc01d2f38b40c4486 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
// Copyright 2016 The Draco Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#ifndef DRACO_COMPRESSION_ENTROPY_RANS_SYMBOL_ENCODER_H_
#define DRACO_COMPRESSION_ENTROPY_RANS_SYMBOL_ENCODER_H_

#include <algorithm>
#include <cmath>
#include <cstring>

#include "draco/compression/entropy/ans.h"
#include "draco/compression/entropy/rans_symbol_coding.h"
#include "draco/core/encoder_buffer.h"
#include "draco/core/varint_encoding.h"

namespace draco {

// A helper class for encoding symbols using the rANS algorithm (see ans.h).
// The class can be used to initialize and encode probability table needed by
// rANS, and to perform encoding of symbols into the provided EncoderBuffer.
template <int unique_symbols_bit_length_t>
class RAnsSymbolEncoder {
 public:
  RAnsSymbolEncoder()
      : num_symbols_(0), num_expected_bits_(0), buffer_offset_(0) {}

  // Creates a probability table needed by the rANS library and encode it into
  // the provided buffer.
  bool Create(const uint64_t *frequencies, int num_symbols,
              EncoderBuffer *buffer);

  void StartEncoding(EncoderBuffer *buffer);
  void EncodeSymbol(uint32_t symbol) {
    ans_.rans_write(&probability_table_[symbol]);
  }
  void EndEncoding(EncoderBuffer *buffer);

  // rANS requires to encode the input symbols in the reverse order.
  static constexpr bool needs_reverse_encoding() { return true; }

 private:
  // Functor used for sorting symbol ids according to their probabilities.
  // The functor sorts symbol indices that index an underlying map between
  // symbol ids and their probabilities. We don't sort the probability table
  // directly, because that would require an additional indirection during the
  // EncodeSymbol() function.
  struct ProbabilityLess {
    explicit ProbabilityLess(const std::vector<rans_sym> *probs)
        : probabilities(probs) {}
    bool operator()(int i, int j) const {
      return probabilities->at(i).prob < probabilities->at(j).prob;
    }
    const std::vector<rans_sym> *probabilities;
  };

  // Encodes the probability table into the output buffer.
  bool EncodeTable(EncoderBuffer *buffer);

  static constexpr int rans_precision_bits_ =
      ComputeRAnsPrecisionFromUniqueSymbolsBitLength(
          unique_symbols_bit_length_t);
  static constexpr int rans_precision_ = 1 << rans_precision_bits_;

  std::vector<rans_sym> probability_table_;
  // The number of symbols in the input alphabet.
  uint32_t num_symbols_;
  // Expected number of bits that is needed to encode the input.
  uint64_t num_expected_bits_;

  RAnsEncoder<rans_precision_bits_> ans_;
  // Initial offset of the encoder buffer before any ans data was encoded.
  uint64_t buffer_offset_;
};

template <int unique_symbols_bit_length_t>
bool RAnsSymbolEncoder<unique_symbols_bit_length_t>::Create(
    const uint64_t *frequencies, int num_symbols, EncoderBuffer *buffer) {
  // Compute the total of the input frequencies.
  uint64_t total_freq = 0;
  int max_valid_symbol = 0;
  for (int i = 0; i < num_symbols; ++i) {
    total_freq += frequencies[i];
    if (frequencies[i] > 0) {
      max_valid_symbol = i;
    }
  }
  num_symbols = max_valid_symbol + 1;
  num_symbols_ = num_symbols;
  probability_table_.resize(num_symbols);
  const double total_freq_d = static_cast<double>(total_freq);
  const double rans_precision_d = static_cast<double>(rans_precision_);
  // Compute probabilities by rescaling the normalized frequencies into interval
  // [1, rans_precision - 1]. The total probability needs to be equal to
  // rans_precision.
  int total_rans_prob = 0;
  for (int i = 0; i < num_symbols; ++i) {
    const uint64_t freq = frequencies[i];

    // Normalized probability.
    const double prob = static_cast<double>(freq) / total_freq_d;

    // RAns probability in range of [1, rans_precision - 1].
    uint32_t rans_prob = static_cast<uint32_t>(prob * rans_precision_d + 0.5f);
    if (rans_prob == 0 && freq > 0) {
      rans_prob = 1;
    }
    probability_table_[i].prob = rans_prob;
    total_rans_prob += rans_prob;
  }
  // Because of rounding errors, the total precision may not be exactly accurate
  // and we may need to adjust the entries a little bit.
  if (total_rans_prob != rans_precision_) {
    std::vector<int> sorted_probabilities(num_symbols);
    for (int i = 0; i < num_symbols; ++i) {
      sorted_probabilities[i] = i;
    }
    std::stable_sort(sorted_probabilities.begin(), sorted_probabilities.end(),
                     ProbabilityLess(&probability_table_));
    if (total_rans_prob < rans_precision_) {
      // This happens rather infrequently, just add the extra needed precision
      // to the most frequent symbol.
      probability_table_[sorted_probabilities.back()].prob +=
          rans_precision_ - total_rans_prob;
    } else {
      // We have over-allocated the precision, which is quite common.
      // Rescale the probabilities of all symbols.
      int32_t error = total_rans_prob - rans_precision_;
      while (error > 0) {
        const double act_total_prob_d = static_cast<double>(total_rans_prob);
        const double act_rel_error_d = rans_precision_d / act_total_prob_d;
        for (int j = num_symbols - 1; j > 0; --j) {
          int symbol_id = sorted_probabilities[j];
          if (probability_table_[symbol_id].prob <= 1) {
            if (j == num_symbols - 1) {
              return false;  // Most frequent symbol would be empty.
            }
            break;
          }
          const int32_t new_prob = static_cast<int32_t>(
              floor(act_rel_error_d *
                    static_cast<double>(probability_table_[symbol_id].prob)));
          int32_t fix = probability_table_[symbol_id].prob - new_prob;
          if (fix == 0u) {
            fix = 1;
          }
          if (fix >= static_cast<int32_t>(probability_table_[symbol_id].prob)) {
            fix = probability_table_[symbol_id].prob - 1;
          }
          if (fix > error) {
            fix = error;
          }
          probability_table_[symbol_id].prob -= fix;
          total_rans_prob -= fix;
          error -= fix;
          if (total_rans_prob == rans_precision_) {
            break;
          }
        }
      }
    }
  }

  // Compute the cumulative probability (cdf).
  uint32_t total_prob = 0;
  for (int i = 0; i < num_symbols; ++i) {
    probability_table_[i].cum_prob = total_prob;
    total_prob += probability_table_[i].prob;
  }
  if (total_prob != rans_precision_) {
    return false;
  }

  // Estimate the number of bits needed to encode the input.
  // From Shannon entropy the total number of bits N is:
  //   N = -sum{i : all_symbols}(F(i) * log2(P(i)))
  // where P(i) is the normalized probability of symbol i and F(i) is the
  // symbol's frequency in the input data.
  double num_bits = 0;
  for (int i = 0; i < num_symbols; ++i) {
    if (probability_table_[i].prob == 0) {
      continue;
    }
    const double norm_prob =
        static_cast<double>(probability_table_[i].prob) / rans_precision_d;
    num_bits += static_cast<double>(frequencies[i]) * log2(norm_prob);
  }
  num_expected_bits_ = static_cast<uint64_t>(ceil(-num_bits));
  if (!EncodeTable(buffer)) {
    return false;
  }
  return true;
}

template <int unique_symbols_bit_length_t>
bool RAnsSymbolEncoder<unique_symbols_bit_length_t>::EncodeTable(
    EncoderBuffer *buffer) {
  EncodeVarint(num_symbols_, buffer);
  // Use varint encoding for the probabilities (first two bits represent the
  // number of bytes used - 1).
  for (uint32_t i = 0; i < num_symbols_; ++i) {
    const uint32_t prob = probability_table_[i].prob;
    int num_extra_bytes = 0;
    if (prob >= (1 << 6)) {
      num_extra_bytes++;
      if (prob >= (1 << 14)) {
        num_extra_bytes++;
        if (prob >= (1 << 22)) {
          // The maximum number of precision bits is 20 so we should not really
          // get to this point.
          return false;
        }
      }
    }
    if (prob == 0) {
      // When the probability of the symbol is 0, set the first two bits to 1
      // (unique identifier) and use the remaining 6 bits to store the offset
      // to the next symbol with non-zero probability.
      uint32_t offset = 0;
      for (; offset < (1 << 6) - 1; ++offset) {
        // Note: we don't have to check whether the next symbol id is larger
        // than num_symbols_ because we know that the last symbol always has
        // non-zero probability.
        const uint32_t next_prob = probability_table_[i + offset + 1].prob;
        if (next_prob > 0) {
          break;
        }
      }
      buffer->Encode(static_cast<uint8_t>((offset << 2) | 3));
      i += offset;
    } else {
      // Encode the first byte (including the number of extra bytes).
      buffer->Encode(static_cast<uint8_t>((prob << 2) | (num_extra_bytes & 3)));
      // Encode the extra bytes.
      for (int b = 0; b < num_extra_bytes; ++b) {
        buffer->Encode(static_cast<uint8_t>(prob >> (8 * (b + 1) - 2)));
      }
    }
  }
  return true;
}

template <int unique_symbols_bit_length_t>
void RAnsSymbolEncoder<unique_symbols_bit_length_t>::StartEncoding(
    EncoderBuffer *buffer) {
  // Allocate extra storage just in case.
  const uint64_t required_bits = 2 * num_expected_bits_ + 32;

  buffer_offset_ = buffer->size();
  const int64_t required_bytes = (required_bits + 7) / 8;
  buffer->Resize(buffer_offset_ + required_bytes + sizeof(buffer_offset_));
  uint8_t *const data =
      reinterpret_cast<uint8_t *>(const_cast<char *>(buffer->data()));
  ans_.write_init(data + buffer_offset_);
}

template <int unique_symbols_bit_length_t>
void RAnsSymbolEncoder<unique_symbols_bit_length_t>::EndEncoding(
    EncoderBuffer *buffer) {
  char *const src = const_cast<char *>(buffer->data()) + buffer_offset_;

  // TODO(fgalligan): Look into changing this to uint32_t as write_end()
  // returns an int.
  const uint64_t bytes_written = static_cast<uint64_t>(ans_.write_end());
  EncoderBuffer var_size_buffer;
  EncodeVarint(bytes_written, &var_size_buffer);
  const uint32_t size_len = static_cast<uint32_t>(var_size_buffer.size());
  char *const dst = src + size_len;
  memmove(dst, src, bytes_written);

  // Store the size of the encoded data.
  memcpy(src, var_size_buffer.data(), size_len);

  // Resize the buffer to match the number of encoded bytes.
  buffer->Resize(buffer_offset_ + bytes_written + size_len);
}

}  // namespace draco

#endif  // DRACO_COMPRESSION_ENTROPY_RANS_SYMBOL_ENCODER_H_