Welcome to mirror list, hosted at ThFree Co, Russian Federation.

mesh_sequential_encoder.cc « mesh « compression « draco « src « draco « draco « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 02ac7779ea39d317a31a89d26a8ccfee0f139086 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
// Copyright 2016 The Draco Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include "draco/compression/mesh/mesh_sequential_encoder.h"

#include <cstdlib>

#include "draco/compression/attributes/linear_sequencer.h"
#include "draco/compression/attributes/sequential_attribute_encoders_controller.h"
#include "draco/compression/entropy/symbol_encoding.h"
#include "draco/core/varint_encoding.h"

namespace draco {

MeshSequentialEncoder::MeshSequentialEncoder() {}

Status MeshSequentialEncoder::EncodeConnectivity() {
  // Serialize indices.
  const uint32_t num_faces = mesh()->num_faces();
  EncodeVarint(num_faces, buffer());
  EncodeVarint(static_cast<uint32_t>(mesh()->num_points()), buffer());

  // We encode all attributes in the original (possibly duplicated) format.
  // TODO(ostava): This may not be optimal if we have only one attribute or if
  // all attributes share the same index mapping.
  if (options()->GetGlobalBool("compress_connectivity", false)) {
    // 0 = Encode compressed indices.
    buffer()->Encode(static_cast<uint8_t>(0));
    if (!CompressAndEncodeIndices()) {
      return Status(Status::DRACO_ERROR, "Failed to compress connectivity.");
    }
  } else {
    // 1 = Encode indices directly.
    buffer()->Encode(static_cast<uint8_t>(1));
    // Store vertex indices using a smallest data type that fits their range.
    // TODO(ostava): This can be potentially improved by using a tighter
    // fit that is not bound by a bit-length of any particular data type.
    if (mesh()->num_points() < 256) {
      // Serialize indices as uint8_t.
      for (FaceIndex i(0); i < num_faces; ++i) {
        const auto &face = mesh()->face(i);
        buffer()->Encode(static_cast<uint8_t>(face[0].value()));
        buffer()->Encode(static_cast<uint8_t>(face[1].value()));
        buffer()->Encode(static_cast<uint8_t>(face[2].value()));
      }
    } else if (mesh()->num_points() < (1 << 16)) {
      // Serialize indices as uint16_t.
      for (FaceIndex i(0); i < num_faces; ++i) {
        const auto &face = mesh()->face(i);
        buffer()->Encode(static_cast<uint16_t>(face[0].value()));
        buffer()->Encode(static_cast<uint16_t>(face[1].value()));
        buffer()->Encode(static_cast<uint16_t>(face[2].value()));
      }
    } else if (mesh()->num_points() < (1 << 21)) {
      // Serialize indices as varint.
      for (FaceIndex i(0); i < num_faces; ++i) {
        const auto &face = mesh()->face(i);
        EncodeVarint(static_cast<uint32_t>(face[0].value()), buffer());
        EncodeVarint(static_cast<uint32_t>(face[1].value()), buffer());
        EncodeVarint(static_cast<uint32_t>(face[2].value()), buffer());
      }
    } else {
      // Serialize faces as uint32_t (default).
      for (FaceIndex i(0); i < num_faces; ++i) {
        const auto &face = mesh()->face(i);
        buffer()->Encode(face);
      }
    }
  }
  return OkStatus();
}

bool MeshSequentialEncoder::GenerateAttributesEncoder(int32_t att_id) {
  // Create only one attribute encoder that is going to encode all points in a
  // linear sequence.
  if (att_id == 0) {
    // Create a new attribute encoder only for the first attribute.
    AddAttributesEncoder(std::unique_ptr<AttributesEncoder>(
        new SequentialAttributeEncodersController(
            std::unique_ptr<PointsSequencer>(
                new LinearSequencer(point_cloud()->num_points())),
            att_id)));
  } else {
    // Reuse the existing attribute encoder for other attributes.
    attributes_encoder(0)->AddAttributeId(att_id);
  }
  return true;
}

bool MeshSequentialEncoder::CompressAndEncodeIndices() {
  // Collect all indices to a buffer and encode them.
  // Each new index is a difference from the previous value.
  std::vector<uint32_t> indices_buffer;
  int32_t last_index_value = 0;
  const int num_faces = mesh()->num_faces();
  for (FaceIndex i(0); i < num_faces; ++i) {
    const auto &face = mesh()->face(i);
    for (int j = 0; j < 3; ++j) {
      const int32_t index_value = face[j].value();
      const int32_t index_diff = index_value - last_index_value;
      // Encode signed value to an unsigned one (put the sign to lsb pos).
      const uint32_t encoded_val =
          (abs(index_diff) << 1) | (index_diff < 0 ? 1 : 0);
      indices_buffer.push_back(encoded_val);
      last_index_value = index_value;
    }
  }
  EncodeSymbols(indices_buffer.data(), static_cast<int>(indices_buffer.size()),
                1, nullptr, buffer());
  return true;
}

void MeshSequentialEncoder::ComputeNumberOfEncodedPoints() {
  set_num_encoded_points(mesh()->num_points());
}

void MeshSequentialEncoder::ComputeNumberOfEncodedFaces() {
  set_num_encoded_faces(mesh()->num_faces());
}

}  // namespace draco