Welcome to mirror list, hosted at ThFree Co, Russian Federation.

mesh_prediction_scheme_tex_coords_encoder.h « prediction_schemes « attributes « compression « draco « src « dracoenc « draco « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 0e938b9c388bebf95a829d648449ab21e264141c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
// Copyright 2016 The Draco Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#ifndef DRACO_COMPRESSION_ATTRIBUTES_PREDICTION_SCHEMES_MESH_PREDICTION_SCHEME_TEX_COORDS_ENCODER_H_
#define DRACO_COMPRESSION_ATTRIBUTES_PREDICTION_SCHEMES_MESH_PREDICTION_SCHEME_TEX_COORDS_ENCODER_H_

#include <math.h>
#include "draco/compression/attributes/prediction_schemes/mesh_prediction_scheme_encoder.h"
#include "draco/compression/bit_coders/rans_bit_encoder.h"
#include "draco/core/varint_encoding.h"
#include "draco/core/vector_d.h"
#include "draco/mesh/corner_table.h"

namespace draco {

// Prediction scheme designed for predicting texture coordinates from known
// spatial position of vertices. For good parametrization, the ratios between
// triangle edge lengths should be about the same in both the spatial and UV
// coordinate spaces, which makes the positions a good predictor for the UV
// coordinates.
template <typename DataTypeT, class TransformT, class MeshDataT>
class MeshPredictionSchemeTexCoordsEncoder
    : public MeshPredictionSchemeEncoder<DataTypeT, TransformT, MeshDataT> {
 public:
  using CorrType = typename MeshPredictionSchemeEncoder<DataTypeT, TransformT,
                                                        MeshDataT>::CorrType;
  MeshPredictionSchemeTexCoordsEncoder(const PointAttribute *attribute,
                                       const TransformT &transform,
                                       const MeshDataT &mesh_data)
      : MeshPredictionSchemeEncoder<DataTypeT, TransformT, MeshDataT>(
            attribute, transform, mesh_data),
        pos_attribute_(nullptr),
        entry_to_point_id_map_(nullptr),
        num_components_(0) {}

  bool ComputeCorrectionValues(
      const DataTypeT *in_data, CorrType *out_corr, int size,
      int num_components, const PointIndex *entry_to_point_id_map) override;

  bool EncodePredictionData(EncoderBuffer *buffer) override;

  PredictionSchemeMethod GetPredictionMethod() const override {
    return MESH_PREDICTION_TEX_COORDS_DEPRECATED;
  }

  bool IsInitialized() const override {
    if (pos_attribute_ == nullptr)
      return false;
    if (!this->mesh_data().IsInitialized())
      return false;
    return true;
  }

  int GetNumParentAttributes() const override { return 1; }

  GeometryAttribute::Type GetParentAttributeType(int i) const override {
    DRACO_DCHECK_EQ(i, 0);
    (void)i;
    return GeometryAttribute::POSITION;
  }

  bool SetParentAttribute(const PointAttribute *att) override {
    if (att->attribute_type() != GeometryAttribute::POSITION)
      return false;  // Invalid attribute type.
    if (att->num_components() != 3)
      return false;  // Currently works only for 3 component positions.
    pos_attribute_ = att;
    return true;
  }

 protected:
  Vector3f GetPositionForEntryId(int entry_id) const {
    const PointIndex point_id = entry_to_point_id_map_[entry_id];
    Vector3f pos;
    pos_attribute_->ConvertValue(pos_attribute_->mapped_index(point_id),
                                 &pos[0]);
    return pos;
  }

  Vector2f GetTexCoordForEntryId(int entry_id, const DataTypeT *data) const {
    const int data_offset = entry_id * num_components_;
    return Vector2f(static_cast<float>(data[data_offset]),
                    static_cast<float>(data[data_offset + 1]));
  }

  void ComputePredictedValue(CornerIndex corner_id, const DataTypeT *data,
                             int data_id);

 private:
  const PointAttribute *pos_attribute_;
  const PointIndex *entry_to_point_id_map_;
  std::unique_ptr<DataTypeT[]> predicted_value_;
  int num_components_;
  // Encoded / decoded array of UV flips.
  std::vector<bool> orientations_;
};

template <typename DataTypeT, class TransformT, class MeshDataT>
bool MeshPredictionSchemeTexCoordsEncoder<DataTypeT, TransformT, MeshDataT>::
    ComputeCorrectionValues(const DataTypeT *in_data, CorrType *out_corr,
                            int size, int num_components,
                            const PointIndex *entry_to_point_id_map) {
  num_components_ = num_components;
  entry_to_point_id_map_ = entry_to_point_id_map;
  predicted_value_ =
      std::unique_ptr<DataTypeT[]>(new DataTypeT[num_components]);
  this->transform().Init(in_data, size, num_components);
  // We start processing from the end because this prediction uses data from
  // previous entries that could be overwritten when an entry is processed.
  for (int p =
           static_cast<int>(this->mesh_data().data_to_corner_map()->size()) - 1;
       p >= 0; --p) {
    const CornerIndex corner_id = this->mesh_data().data_to_corner_map()->at(p);
    ComputePredictedValue(corner_id, in_data, p);

    const int dst_offset = p * num_components;
    this->transform().ComputeCorrection(
        in_data + dst_offset, predicted_value_.get(), out_corr + dst_offset);
  }
  return true;
}

template <typename DataTypeT, class TransformT, class MeshDataT>
bool MeshPredictionSchemeTexCoordsEncoder<DataTypeT, TransformT, MeshDataT>::
    EncodePredictionData(EncoderBuffer *buffer) {
  // Encode the delta-coded orientations using arithmetic coding.
  const uint32_t num_orientations = static_cast<uint32_t>(orientations_.size());
  EncodeVarint(num_orientations, buffer);
  bool last_orientation = true;
  RAnsBitEncoder encoder;
  encoder.StartEncoding();
  for (bool orientation : orientations_) {
    encoder.EncodeBit(orientation == last_orientation);
    last_orientation = orientation;
  }
  encoder.EndEncoding(buffer);
  return MeshPredictionSchemeEncoder<DataTypeT, TransformT,
                                     MeshDataT>::EncodePredictionData(buffer);
}

template <typename DataTypeT, class TransformT, class MeshDataT>
void MeshPredictionSchemeTexCoordsEncoder<DataTypeT, TransformT, MeshDataT>::
    ComputePredictedValue(CornerIndex corner_id, const DataTypeT *data,
                          int data_id) {
  // Compute the predicted UV coordinate from the positions on all corners
  // of the processed triangle. For the best prediction, the UV coordinates
  // on the next/previous corners need to be already encoded/decoded.
  const CornerIndex next_corner_id =
      this->mesh_data().corner_table()->Next(corner_id);
  const CornerIndex prev_corner_id =
      this->mesh_data().corner_table()->Previous(corner_id);
  // Get the encoded data ids from the next and previous corners.
  // The data id is the encoding order of the UV coordinates.
  int next_data_id, prev_data_id;

  int next_vert_id, prev_vert_id;
  next_vert_id =
      this->mesh_data().corner_table()->Vertex(next_corner_id).value();
  prev_vert_id =
      this->mesh_data().corner_table()->Vertex(prev_corner_id).value();

  next_data_id = this->mesh_data().vertex_to_data_map()->at(next_vert_id);
  prev_data_id = this->mesh_data().vertex_to_data_map()->at(prev_vert_id);

  if (prev_data_id < data_id && next_data_id < data_id) {
    // Both other corners have available UV coordinates for prediction.
    const Vector2f n_uv = GetTexCoordForEntryId(next_data_id, data);
    const Vector2f p_uv = GetTexCoordForEntryId(prev_data_id, data);
    if (p_uv == n_uv) {
      // We cannot do a reliable prediction on degenerated UV triangles.
      predicted_value_[0] = static_cast<int>(p_uv[0]);
      predicted_value_[1] = static_cast<int>(p_uv[1]);
      return;
    }

    // Get positions at all corners.
    const Vector3f tip_pos = GetPositionForEntryId(data_id);
    const Vector3f next_pos = GetPositionForEntryId(next_data_id);
    const Vector3f prev_pos = GetPositionForEntryId(prev_data_id);
    // Use the positions of the above triangle to predict the texture coordinate
    // on the tip corner C.
    // Convert the triangle into a new coordinate system defined by orthogonal
    // bases vectors S, T, where S is vector prev_pos - next_pos and T is an
    // perpendicular vector to S in the same plane as vector the
    // tip_pos - next_pos.
    // The transformed triangle in the new coordinate system is then going to
    // be represented as:
    //
    //        1 ^
    //          |
    //          |
    //          |   C
    //          |  /  \
    //          | /      \
    //          |/          \
    //          N--------------P
    //          0              1
    //
    // Where next_pos point (N) is at position (0, 0), prev_pos point (P) is
    // at (1, 0). Our goal is to compute the position of the tip_pos point (C)
    // in this new coordinate space (s, t).
    //
    const Vector3f pn = prev_pos - next_pos;
    const Vector3f cn = tip_pos - next_pos;
    const float pn_norm2_squared = pn.SquaredNorm();
    // Coordinate s of the tip corner C is simply the dot product of the
    // normalized vectors |pn| and |cn| (normalized by the length of |pn|).
    // Since both of these vectors are normalized, we don't need to perform the
    // normalization explicitly and instead we can just use the squared norm
    // of |pn| as a denominator of the resulting dot product of non normalized
    // vectors.
    float s, t;
    // |pn_norm2_squared| can be exactly 0 when the next_pos and prev_pos are
    // the same positions (e.g. because they were quantized to the same
    // location).
    if (pn_norm2_squared > 0) {
      s = pn.Dot(cn) / pn_norm2_squared;
      // To get the coordinate t, we can use formula:
      //      t = |C-N - (P-N) * s| / |P-N|
      // Do not use std::sqrt to avoid changes in the bitstream.
      t = sqrt((cn - pn * s).SquaredNorm() / pn_norm2_squared);
    } else {
      s = 0;
      t = 0;
    }

    // Now we need to transform the point (s, t) to the texture coordinate space
    // UV. We know the UV coordinates on points N and P (N_UV and P_UV). Lets
    // denote P_UV - N_UV = PN_UV. PN_UV is then 2 dimensional vector that can
    // be used to define transformation from the normalized coordinate system
    // to the texture coordinate system using a 3x3 affine matrix M:
    //
    //  M = | PN_UV[0]  -PN_UV[1]  N_UV[0] |
    //      | PN_UV[1]   PN_UV[0]  N_UV[1] |
    //      | 0          0         1       |
    //
    // The predicted point C_UV in the texture space is then equal to
    // C_UV = M * (s, t, 1). Because the triangle in UV space may be flipped
    // around the PN_UV axis, we also need to consider point C_UV' = M * (s, -t)
    // as the prediction.
    const Vector2f pn_uv = p_uv - n_uv;
    const float pnus = pn_uv[0] * s + n_uv[0];
    const float pnut = pn_uv[0] * t;
    const float pnvs = pn_uv[1] * s + n_uv[1];
    const float pnvt = pn_uv[1] * t;
    Vector2f predicted_uv;

    // When encoding compute both possible vectors and determine which one
    // results in a better prediction.
    const Vector2f predicted_uv_0(pnus - pnvt, pnvs + pnut);
    const Vector2f predicted_uv_1(pnus + pnvt, pnvs - pnut);
    const Vector2f c_uv = GetTexCoordForEntryId(data_id, data);
    if ((c_uv - predicted_uv_0).SquaredNorm() <
        (c_uv - predicted_uv_1).SquaredNorm()) {
      predicted_uv = predicted_uv_0;
      orientations_.push_back(true);
    } else {
      predicted_uv = predicted_uv_1;
      orientations_.push_back(false);
    }
    if (std::is_integral<DataTypeT>::value) {
      // Round the predicted value for integer types.
      predicted_value_[0] = static_cast<int>(floor(predicted_uv[0] + 0.5));
      predicted_value_[1] = static_cast<int>(floor(predicted_uv[1] + 0.5));
    } else {
      predicted_value_[0] = static_cast<int>(predicted_uv[0]);
      predicted_value_[1] = static_cast<int>(predicted_uv[1]);
    }
    return;
  }
  // Else we don't have available textures on both corners. For such case we
  // can't use positions for predicting the uv value and we resort to delta
  // coding.
  int data_offset = 0;
  if (prev_data_id < data_id) {
    // Use the value on the previous corner as the prediction.
    data_offset = prev_data_id * num_components_;
  }
  if (next_data_id < data_id) {
    // Use the value on the next corner as the prediction.
    data_offset = next_data_id * num_components_;
  } else {
    // None of the other corners have a valid value. Use the last encoded value
    // as the prediction if possible.
    if (data_id > 0) {
      data_offset = (data_id - 1) * num_components_;
    } else {
      // We are encoding the first value. Predict 0.
      for (int i = 0; i < num_components_; ++i) {
        predicted_value_[i] = 0;
      }
      return;
    }
  }
  for (int i = 0; i < num_components_; ++i) {
    predicted_value_[i] = data[data_offset + i];
  }
}

}  // namespace draco

#endif  // DRACO_COMPRESSION_ATTRIBUTES_PREDICTION_SCHEMES_MESH_PREDICTION_SCHEME_TEX_COORDS_H_