Welcome to mirror list, hosted at ThFree Co, Russian Federation.

keyframe_selection.cc « simple_pipeline « libmv « libmv « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 7b90c28bbcaadbebdc178ae083ac524c705fe456 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
// Copyright (c) 2012 libmv authors.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.

#include "libmv/simple_pipeline/keyframe_selection.h"

#include "libmv/numeric/numeric.h"
#include "ceres/ceres.h"
#include "libmv/logging/logging.h"
#include "libmv/multiview/homography.h"
#include "libmv/multiview/fundamental.h"
#include "libmv/simple_pipeline/intersect.h"
#include "libmv/simple_pipeline/bundle.h"

#include <Eigen/Eigenvalues>

namespace libmv {
namespace {

Mat3 IntrinsicsNormalizationMatrix(const CameraIntrinsics &intrinsics) {
  Mat3 T = Mat3::Identity(), S = Mat3::Identity();

  T(0, 2) = -intrinsics.principal_point_x();
  T(1, 2) = -intrinsics.principal_point_y();

  S(0, 0) /= intrinsics.focal_length_x();
  S(1, 1) /= intrinsics.focal_length_y();

  return S * T;
}

// P.H.S. Torr
// Geometric Motion Segmentation and Model Selection
//
// http://reference.kfupm.edu.sa/content/g/e/geometric_motion_segmentation_and_model__126445.pdf
//
// d is the number of dimensions modeled
//     (d = 3 for a fundamental matrix or 2 for a homography)
// k is the number of degrees of freedom in the model
//     (k = 7 for a fundamental matrix or 8 for a homography)
// r is the dimension of the data
//     (r = 4 for 2D correspondences between two frames)
double GRIC(const Vec &e, int d, int k, int r) {
  int n = e.rows();
  double lambda1 = log(static_cast<double>(r));
  double lambda2 = log(static_cast<double>(r * n));

  // lambda3 limits the residual error, and this paper
  // http://elvera.nue.tu-berlin.de/files/0990Knorr2006.pdf
  // suggests using lambda3 of 2
  // same value is used in Torr's Problem of degeneracy in structure
  // and motion recovery from uncalibrated image sequences
  // http://www.robots.ox.ac.uk/~vgg/publications/papers/torr99.ps.gz
  double lambda3 = 2.0;

  // measurement error of tracker
  double sigma2 = 0.01;

  // Actual GRIC computation
  double gric_result = 0.0;

  for (int i = 0; i < n; i++) {
    double rho = std::min(e(i) * e(i) / sigma2, lambda3 * (r - d));
    gric_result += rho;
  }

  gric_result += lambda1 * d * n;
  gric_result += lambda2 * k;

  return gric_result;
}

// Compute a generalized inverse using eigen value decomposition.
// It'll actually also zero 7 last eigen values to deal with
// gauges, since this function is used to compute variance of
// reconstructed 3D points.
//
// TODO(sergey): Could be generalized by making it so number
//               of values to be zeroed is passed by an argument
//               and moved to numeric module.
Mat pseudoInverse(const Mat &matrix) {
  Eigen::EigenSolver<Mat> eigenSolver(matrix);
  Mat D = eigenSolver.pseudoEigenvalueMatrix();
  Mat V = eigenSolver.pseudoEigenvectors();

  double epsilon = std::numeric_limits<double>::epsilon();

  for (int i = 0; i < D.cols(); ++i) {
    if (D(i, i) > epsilon)
      D(i, i) = 1.0 / D(i, i);
    else
      D(i, i) = 0.0;
  }

  // Zero last 7 (which corresponds to smallest eigen values).
  // 7 equals to the number of gauge freedoms.
  for (int i = D.cols() - 7; i < D.cols(); ++i)
    D(i, i) = 0.0;

  return V * D * V.inverse();
}

void filterZeroWeightMarkersFromTracks(const Tracks &tracks,
                                       Tracks *filtered_tracks) {
  vector<Marker> all_markers = tracks.AllMarkers();

  for (int i = 0; i < all_markers.size(); ++i) {
    Marker &marker = all_markers[i];
    if (marker.weight != 0.0) {
      filtered_tracks->Insert(marker.image,
                              marker.track,
                              marker.x,
                              marker.y,
                              marker.weight);
    }
  }
}

}  // namespace

void SelectKeyframesBasedOnGRICAndVariance(const Tracks &_tracks,
                                           const CameraIntrinsics &intrinsics,
                                           vector<int> &keyframes) {
  // Mirza Tahir Ahmed, Matthew N. Dailey
  // Robust key frame extraction for 3D reconstruction from video streams
  //
  // http://www.cs.ait.ac.th/~mdailey/papers/Tahir-KeyFrame.pdf

  Tracks filtered_tracks;
  filterZeroWeightMarkersFromTracks(_tracks, &filtered_tracks);

  int max_image = filtered_tracks.MaxImage();
  int next_keyframe = 1;
  int number_keyframes = 0;

  // Limit correspondence ratio from both sides.
  // On the one hand if number of correspondent features is too low,
  // triangulation will suffer.
  // On the other hand high correspondence likely means short baseline.
  // which also will affect om accuracy
  const double Tmin = 0.8;
  const double Tmax = 1.0;

  Mat3 N = IntrinsicsNormalizationMatrix(intrinsics);
  Mat3 N_inverse = N.inverse();

  double Sc_best = std::numeric_limits<double>::max();
  double success_intersects_factor_best = 0.0f;

  while (next_keyframe != -1) {
    int current_keyframe = next_keyframe;
    double Sc_best_candidate = std::numeric_limits<double>::max();

    LG << "Found keyframe " << next_keyframe;

    number_keyframes++;
    next_keyframe = -1;

    for (int candidate_image = current_keyframe + 1;
         candidate_image <= max_image;
         candidate_image++) {
      // Conjunction of all markers from both keyframes
      vector<Marker> all_markers =
        filtered_tracks.MarkersInBothImages(current_keyframe,
                                            candidate_image);

      // Match keypoints between frames current_keyframe and candidate_image
      vector<Marker> tracked_markers =
        filtered_tracks.MarkersForTracksInBothImages(current_keyframe,
                                                     candidate_image);

      // Correspondences in normalized space
      Mat x1, x2;
      CoordinatesForMarkersInImage(tracked_markers, current_keyframe, &x1);
      CoordinatesForMarkersInImage(tracked_markers, candidate_image, &x2);

      LG << "Found " << x1.cols()
         << " correspondences between " << current_keyframe
         << " and " << candidate_image;

      // Not enough points to construct fundamental matrix
      if (x1.cols() < 8 || x2.cols() < 8)
        continue;

      // STEP 1: Correspondence ratio constraint
      int Tc = tracked_markers.size();
      int Tf = all_markers.size();
      double Rc = static_cast<double>(Tc) / Tf;

      LG << "Correspondence between " << current_keyframe
         << " and " << candidate_image
         << ": " << Rc;

      if (Rc < Tmin || Rc > Tmax)
        continue;

      Mat3 H, F;

      // Estimate homography using default options.
      EstimateHomographyOptions estimate_homography_options;
      EstimateHomography2DFromCorrespondences(x1,
                                              x2,
                                              estimate_homography_options,
                                              &H);

      // Convert homography to original pixel space.
      H = N_inverse * H * N;

      EstimateFundamentalOptions estimate_fundamental_options;
      EstimateFundamentalFromCorrespondences(x1,
                                        x2,
                                        estimate_fundamental_options,
                                        &F);

      // Convert fundamental to original pixel space.
      F = N_inverse * F * N;

      // TODO(sergey): STEP 2: Discard outlier matches

      // STEP 3: Geometric Robust Information Criteria

      // Compute error values for homography and fundamental matrices
      Vec H_e, F_e;
      H_e.resize(x1.cols());
      F_e.resize(x1.cols());
      for (int i = 0; i < x1.cols(); i++) {
        Vec2 current_x1, current_x2;

        intrinsics.NormalizedToImageSpace(x1(0, i), x1(1, i),
                                          &current_x1(0), &current_x1(1));

        intrinsics.NormalizedToImageSpace(x2(0, i), x2(1, i),
                                          &current_x2(0), &current_x2(1));

        H_e(i) = SymmetricGeometricDistance(H, current_x1, current_x2);
        F_e(i) = SymmetricEpipolarDistance(F, current_x1, current_x2);
      }

      LG << "H_e: " << H_e.transpose();
      LG << "F_e: " << F_e.transpose();

      // Degeneracy constraint
      double GRIC_H = GRIC(H_e, 2, 8, 4);
      double GRIC_F = GRIC(F_e, 3, 7, 4);

      LG << "GRIC values for frames " << current_keyframe
         << " and " << candidate_image
         << ", H-GRIC: " << GRIC_H
         << ", F-GRIC: " << GRIC_F;

      if (GRIC_H <= GRIC_F)
        continue;

      // TODO(sergey): STEP 4: PELC criterion

      // STEP 5: Estimation of reconstruction error
      //
      // Uses paper Keyframe Selection for Camera Motion and Structure
      // Estimation from Multiple Views
      // Uses ftp://ftp.tnt.uni-hannover.de/pub/papers/2004/ECCV2004-TTHBAW.pdf
      // Basically, equation (15)
      //
      // TODO(sergey): separate all the constraints into functions,
      //               this one is getting to much cluttered already

      // Definitions in equation (15):
      // - I is the number of 3D feature points
      // - A is the number of essential parameters of one camera

      EuclideanReconstruction reconstruction;

      // The F matrix should be an E matrix, but squash it just to be sure

      // Reconstruction should happen using normalized fundamental matrix
      Mat3 F_normal = N * F * N_inverse;

      Mat3 E;
      FundamentalToEssential(F_normal, &E);

      // Recover motion between the two images. Since this function assumes a
      // calibrated camera, use the identity for K
      Mat3 R;
      Vec3 t;
      Mat3 K = Mat3::Identity();

      if (!MotionFromEssentialAndCorrespondence(E,
                                                K, x1.col(0),
                                                K, x2.col(0),
                                                &R, &t)) {
        LG << "Failed to compute R and t from E and K";
        continue;
      }

      LG << "Camera transform between frames " << current_keyframe
         << " and " << candidate_image
         << ":\nR:\n" << R
         << "\nt:" << t.transpose();

      // First camera is identity, second one is relative to it
      reconstruction.InsertCamera(current_keyframe,
                                  Mat3::Identity(),
                                  Vec3::Zero());
      reconstruction.InsertCamera(candidate_image, R, t);

      // Reconstruct 3D points
      int intersects_total = 0, intersects_success = 0;
      for (int i = 0; i < tracked_markers.size(); i++) {
        if (!reconstruction.PointForTrack(tracked_markers[i].track)) {
          vector<Marker> reconstructed_markers;

          int track = tracked_markers[i].track;

          reconstructed_markers.push_back(tracked_markers[i]);

          // We know there're always only two markers for a track
          // Also, we're using brute-force search because we don't
          // actually know about markers layout in a list, but
          // at this moment this cycle will run just once, which
          // is not so big deal

          for (int j = i + 1; j < tracked_markers.size(); j++) {
            if (tracked_markers[j].track == track) {
              reconstructed_markers.push_back(tracked_markers[j]);
              break;
            }
          }

          intersects_total++;

          if (EuclideanIntersect(reconstructed_markers, &reconstruction)) {
            LG << "Ran Intersect() for track " << track;
            intersects_success++;
          } else {
            LG << "Filed to intersect track " << track;
          }
        }
      }

      double success_intersects_factor =
          (double) intersects_success / intersects_total;

      if (success_intersects_factor < success_intersects_factor_best) {
        LG << "Skip keyframe candidate because of "
              "lower successful intersections ratio";

        continue;
      }

      success_intersects_factor_best = success_intersects_factor;

      Tracks two_frames_tracks(tracked_markers);
      PolynomialCameraIntrinsics empty_intrinsics;
      BundleEvaluation evaluation;
      evaluation.evaluate_jacobian = true;

      EuclideanBundleCommonIntrinsics(two_frames_tracks,
                                      BUNDLE_NO_INTRINSICS,
                                      BUNDLE_NO_CONSTRAINTS,
                                      &reconstruction,
                                      &empty_intrinsics,
                                      &evaluation);

      Mat &jacobian = evaluation.jacobian;

      Mat JT_J = jacobian.transpose() * jacobian;
      Mat JT_J_inv = pseudoInverse(JT_J);

      Mat temp_derived = JT_J * JT_J_inv * JT_J;
      bool is_inversed = (temp_derived - JT_J).cwiseAbs2().sum() <
          1e-4 * std::min(temp_derived.cwiseAbs2().sum(),
                          JT_J.cwiseAbs2().sum());

      LG << "Check on inversed: " << (is_inversed ? "true" : "false" )
         << ", det(JT_J): " << JT_J.determinant();

      if (!is_inversed) {
        LG << "Ignoring candidature due to poor jacobian stability";
        continue;
      }

      Mat Sigma_P;
      Sigma_P = JT_J_inv.bottomRightCorner(evaluation.num_points * 3,
                                           evaluation.num_points * 3);

      int I = evaluation.num_points;
      int A = 12;

      double Sc = static_cast<double>(I + A) / Square(3 * I) * Sigma_P.trace();

      LG << "Expected estimation error between "
         << current_keyframe << " and "
         << candidate_image << ": " << Sc;

      // Pairing with a lower Sc indicates a better choice
      if (Sc > Sc_best_candidate)
        continue;

      Sc_best_candidate = Sc;

      next_keyframe = candidate_image;
    }

    // This is a bit arbitrary and main reason of having this is to deal
    // better with situations when there's no keyframes were found for
    // current keyframe this could happen when there's no so much parallax
    // in the beginning of image sequence and then most of features are
    // getting occluded. In this case there could be good keyframe pair in
    // the middle of the sequence
    //
    // However, it's just quick hack and smarter way to do this would be nice
    if (next_keyframe == -1) {
      next_keyframe = current_keyframe + 10;
      number_keyframes = 0;

      if (next_keyframe >= max_image)
        break;

      LG << "Starting searching for keyframes starting from " << next_keyframe;
    } else {
      // New pair's expected reconstruction error is lower
      // than existing pair's one.
      //
      // For now let's store just one candidate, easy to
      // store more candidates but needs some thoughts
      // how to choose best one automatically from them
      // (or allow user to choose pair manually).
      if (Sc_best > Sc_best_candidate) {
        keyframes.clear();
        keyframes.push_back(current_keyframe);
        keyframes.push_back(next_keyframe);
        Sc_best = Sc_best_candidate;
      }
    }
  }
}

}  // namespace libmv