Welcome to mirror list, hosted at ThFree Co, Russian Federation.

runtime_numeric_diff_cost_function.cc « ceres « internal « ceres « third_party « libmv « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 7af275c1dd84478bd669d2577c8e4556b7db4e61 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
// http://code.google.com/p/ceres-solver/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
//   this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
//   this list of conditions and the following disclaimer in the documentation
//   and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
//   used to endorse or promote products derived from this software without
//   specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: keir@google.com (Keir Mierle)
//
// Based on the templated version in public/numeric_diff_cost_function.h.

#include "ceres/runtime_numeric_diff_cost_function.h"

#include <algorithm>
#include <numeric>
#include <vector>
#include "Eigen/Dense"
#include "ceres/cost_function.h"
#include "ceres/internal/scoped_ptr.h"
#include "glog/logging.h"

namespace ceres {
namespace internal {
namespace {

bool EvaluateJacobianForParameterBlock(const CostFunction* function,
                                       int parameter_block_size,
                                       int parameter_block,
                                       RuntimeNumericDiffMethod method,
                                       double relative_step_size,
                                       double const* residuals_at_eval_point,
                                       double** parameters,
                                       double** jacobians) {
  using Eigen::Map;
  using Eigen::Matrix;
  using Eigen::Dynamic;
  using Eigen::RowMajor;

  typedef Matrix<double, Dynamic, 1> ResidualVector;
  typedef Matrix<double, Dynamic, 1> ParameterVector;
  typedef Matrix<double, Dynamic, Dynamic, RowMajor> JacobianMatrix;

  int num_residuals = function->num_residuals();

  Map<JacobianMatrix> parameter_jacobian(jacobians[parameter_block],
                                         num_residuals,
                                         parameter_block_size);

  // Mutate one element at a time and then restore.
  Map<ParameterVector> x_plus_delta(parameters[parameter_block],
                                    parameter_block_size);
  ParameterVector x(x_plus_delta);
  ParameterVector step_size = x.array().abs() * relative_step_size;

  // To handle cases where a paremeter is exactly zero, instead use the mean
  // step_size for the other dimensions.
  double fallback_step_size = step_size.sum() / step_size.rows();
  if (fallback_step_size == 0.0) {
    // If all the parameters are zero, there's no good answer. Use the given
    // relative step_size as absolute step_size and hope for the best.
    fallback_step_size = relative_step_size;
  }

  // For each parameter in the parameter block, use finite differences to
  // compute the derivative for that parameter.
  for (int j = 0; j < parameter_block_size; ++j) {
    if (step_size(j) == 0.0) {
      // The parameter is exactly zero, so compromise and use the mean step_size
      // from the other parameters. This can break in many cases, but it's hard
      // to pick a good number without problem specific knowledge.
      step_size(j) = fallback_step_size;
    }
    x_plus_delta(j) = x(j) + step_size(j);

    ResidualVector residuals(num_residuals);
    if (!function->Evaluate(parameters, &residuals[0], NULL)) {
      // Something went wrong; bail.
      return false;
    }

    // Compute this column of the jacobian in 3 steps:
    // 1. Store residuals for the forward part.
    // 2. Subtract residuals for the backward (or 0) part.
    // 3. Divide out the run.
    parameter_jacobian.col(j) = residuals;

    double one_over_h = 1 / step_size(j);
    if (method == CENTRAL) {
      // Compute the function on the other side of x(j).
      x_plus_delta(j) = x(j) - step_size(j);

      if (!function->Evaluate(parameters, &residuals[0], NULL)) {
        // Something went wrong; bail.
        return false;
      }
      parameter_jacobian.col(j) -= residuals;
      one_over_h /= 2;
    } else {
      // Forward difference only; reuse existing residuals evaluation.
      parameter_jacobian.col(j) -=
          Map<const ResidualVector>(residuals_at_eval_point, num_residuals);
    }
    x_plus_delta(j) = x(j);  // Restore x_plus_delta.

    // Divide out the run to get slope.
    parameter_jacobian.col(j) *= one_over_h;
  }
  return true;
}

class RuntimeNumericDiffCostFunction : public CostFunction {
 public:
  RuntimeNumericDiffCostFunction(const CostFunction* function,
                                 RuntimeNumericDiffMethod method,
                                 double relative_step_size)
      : function_(function),
        method_(method),
        relative_step_size_(relative_step_size) {
    *mutable_parameter_block_sizes() = function->parameter_block_sizes();
    set_num_residuals(function->num_residuals());
  }

  virtual ~RuntimeNumericDiffCostFunction() { }

  virtual bool Evaluate(double const* const* parameters,
                        double* residuals,
                        double** jacobians) const {
    // Get the function value (residuals) at the the point to evaluate.
    bool success = function_->Evaluate(parameters, residuals, NULL);
    if (!success) {
      // Something went wrong; ignore the jacobian.
      return false;
    }
    if (!jacobians) {
      // Nothing to do; just forward.
      return true;
    }

    const vector<int16>& block_sizes = function_->parameter_block_sizes();
    CHECK(!block_sizes.empty());

    // Create local space for a copy of the parameters which will get mutated.
    int parameters_size = accumulate(block_sizes.begin(), block_sizes.end(), 0);
    vector<double> parameters_copy(parameters_size);
    vector<double*> parameters_references_copy(block_sizes.size());
    parameters_references_copy[0] = &parameters_copy[0];
    for (int block = 1; block < block_sizes.size(); ++block) {
      parameters_references_copy[block] = parameters_references_copy[block - 1]
          + block_sizes[block - 1];
    }

    // Copy the parameters into the local temp space.
    for (int block = 0; block < block_sizes.size(); ++block) {
      memcpy(parameters_references_copy[block],
             parameters[block],
             block_sizes[block] * sizeof(*parameters[block]));
    }

    for (int block = 0; block < block_sizes.size(); ++block) {
      if (!jacobians[block]) {
        // No jacobian requested for this parameter / residual pair.
        continue;
      }
      if (!EvaluateJacobianForParameterBlock(function_,
                                             block_sizes[block],
                                             block,
                                             method_,
                                             relative_step_size_,
                                             residuals,
                                             &parameters_references_copy[0],
                                             jacobians)) {
        return false;
      }
    }
    return true;
  }

 private:
  const CostFunction* function_;
  RuntimeNumericDiffMethod method_;
  double relative_step_size_;
};

}  // namespace

CostFunction* CreateRuntimeNumericDiffCostFunction(
    const CostFunction* cost_function,
    RuntimeNumericDiffMethod method,
    double relative_step_size) {
  return new RuntimeNumericDiffCostFunction(cost_function,
                                            method,
                                            relative_step_size);
}

}  // namespace internal
}  // namespace ceres