Welcome to mirror list, hosted at ThFree Co, Russian Federation.

v3d_optimization.h « Math « ssba « third_party « libmv « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 27d2e12287f3edcce49562eaf4cc5cec8cd1df2f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
// -*- C++ -*-
/*
Copyright (c) 2008 University of North Carolina at Chapel Hill

This file is part of SSBA (Simple Sparse Bundle Adjustment).

SSBA is free software: you can redistribute it and/or modify it under the
terms of the GNU Lesser General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option) any
later version.

SSBA is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE.  See the GNU Lesser General Public License for more
details.

You should have received a copy of the GNU Lesser General Public License along
with SSBA. If not, see <http://www.gnu.org/licenses/>.
*/

#ifndef V3D_OPTIMIZATION_H
#define V3D_OPTIMIZATION_H

#include "Math/v3d_linear.h"
#include "Math/v3d_mathutilities.h"

#include <vector>
#include <iostream>

namespace V3D
{

   enum
   {
      LEVENBERG_OPTIMIZER_TIMEOUT = 0,
      LEVENBERG_OPTIMIZER_SMALL_UPDATE = 1,
      LEVENBERG_OPTIMIZER_CONVERGED = 2
   };

   extern int optimizerVerbosenessLevel;

   struct LevenbergOptimizerCommon
   {
         LevenbergOptimizerCommon()
            : status(LEVENBERG_OPTIMIZER_TIMEOUT), currentIteration(0), maxIterations(50),
              tau(1e-3), lambda(1e-3),
              gradientThreshold(1e-10), updateThreshold(1e-10),
              _nu(2.0)
         { }
         virtual ~LevenbergOptimizerCommon() {}

         // See Madsen et al., "Methods for non-linear least squares problems."
         virtual void increaseLambda()
         {
            lambda *= _nu; _nu *= 2.0;
         }

         virtual void decreaseLambda(double const rho)
         {
            double const r = 2*rho - 1.0;
            lambda *= std::max(1.0/3.0, 1 - r*r*r);
            if (lambda < 1e-10) lambda = 1e-10;
            _nu = 2;
         }

         bool applyGradientStoppingCriteria(double maxGradient) const
         {
            return maxGradient < gradientThreshold;
         }

         bool applyUpdateStoppingCriteria(double paramLength, double updateLength) const
         {
            return updateLength < updateThreshold * (paramLength + updateThreshold);
         }

         int    status;
         int    currentIteration, maxIterations;
         double tau, lambda;
         double gradientThreshold, updateThreshold;

      protected:
         double _nu;
   }; // end struct LevenbergOptimizerCommon

# if defined(V3DLIB_ENABLE_SUITESPARSE)

   struct SparseLevenbergOptimizer : public LevenbergOptimizerCommon
   {
         SparseLevenbergOptimizer(int measurementDimension,
                                  int nParametersA, int paramDimensionA,
                                  int nParametersB, int paramDimensionB,
                                  int paramDimensionC,
                                  std::vector<int> const& correspondingParamA,
                                  std::vector<int> const& correspondingParamB)
            : LevenbergOptimizerCommon(),
              _nMeasurements(correspondingParamA.size()),
              _measurementDimension(measurementDimension),
              _nParametersA(nParametersA), _paramDimensionA(paramDimensionA),
              _nParametersB(nParametersB), _paramDimensionB(paramDimensionB),
              _paramDimensionC(paramDimensionC),
              _nNonvaryingA(0), _nNonvaryingB(0), _nNonvaryingC(0),
              _correspondingParamA(correspondingParamA),
              _correspondingParamB(correspondingParamB)
         {
            assert(correspondingParamA.size() == correspondingParamB.size());
         }

         ~SparseLevenbergOptimizer() { }

         void setNonvaryingCounts(int nNonvaryingA, int nNonvaryingB, int nNonvaryingC)
         {
            _nNonvaryingA = nNonvaryingA;
            _nNonvaryingB = nNonvaryingB;
            _nNonvaryingC = nNonvaryingC;
         }

         void getNonvaryingCounts(int& nNonvaryingA, int& nNonvaryingB, int& nNonvaryingC) const
         {
            nNonvaryingA = _nNonvaryingA;
            nNonvaryingB = _nNonvaryingB;
            nNonvaryingC = _nNonvaryingC;
         }

         void minimize();

         virtual void evalResidual(VectorArray<double>& residuals) = 0;

         virtual void fillWeights(VectorArray<double> const& residuals, Vector<double>& w)
         {
            (void)residuals;
            std::fill(w.begin(), w.end(), 1.0);
         }

         void fillAllJacobians(Vector<double> const& w,
                               MatrixArray<double>& Ak,
                               MatrixArray<double>& Bk,
                               MatrixArray<double>& Ck)
         {
            int const nVaryingA = _nParametersA - _nNonvaryingA;
            int const nVaryingB = _nParametersB - _nNonvaryingB;
            int const nVaryingC = _paramDimensionC - _nNonvaryingC;

            for (unsigned k = 0; k < _nMeasurements; ++k)
            {
               int const i = _correspondingParamA[k];
               int const j = _correspondingParamB[k];

               if (i < _nNonvaryingA && j < _nNonvaryingB) continue;

               fillJacobians(Ak[k], Bk[k], Ck[k], i, j, k);
            } // end for (k)

            if (nVaryingA > 0)
            {
               for (unsigned k = 0; k < _nMeasurements; ++k)
                  scaleMatrixIP(w[k], Ak[k]);
            }
            if (nVaryingB > 0)
            {
               for (unsigned k = 0; k < _nMeasurements; ++k)
                  scaleMatrixIP(w[k], Bk[k]);
            }
            if (nVaryingC > 0)
            {
               for (unsigned k = 0; k < _nMeasurements; ++k)
                  scaleMatrixIP(w[k], Ck[k]);
            }
         } // end fillAllJacobians()

         virtual void setupJacobianGathering() { }

         virtual void fillJacobians(Matrix<double>& Ak, Matrix<double>& Bk, Matrix<double>& Ck,
                                    int i, int j, int k) = 0;

         virtual double getParameterLength() const = 0;

         virtual void updateParametersA(VectorArray<double> const& deltaAi) = 0;
         virtual void updateParametersB(VectorArray<double> const& deltaBj) = 0;
         virtual void updateParametersC(Vector<double> const& deltaC) = 0;
         virtual void saveAllParameters() = 0;
         virtual void restoreAllParameters() = 0;

         int currentIteration, maxIterations;

      protected:
         void serializeNonZerosJtJ(std::vector<std::pair<int, int> >& dst) const;
         void setupSparseJtJ();
         void fillSparseJtJ(MatrixArray<double> const& Ui, MatrixArray<double> const& Vj, MatrixArray<double> const& Wk,
                            Matrix<double> const& Z, Matrix<double> const& X, Matrix<double> const& Y);

         int const _nMeasurements, _measurementDimension;
         int const _nParametersA, _paramDimensionA;
         int const _nParametersB, _paramDimensionB;
         int const _paramDimensionC;

         int _nNonvaryingA, _nNonvaryingB, _nNonvaryingC;

         std::vector<int> const& _correspondingParamA;
         std::vector<int> const& _correspondingParamB;

         std::vector<pair<int, int> > _jointNonzerosW;
         std::vector<int>             _jointIndexW;

         std::vector<int> _JtJ_Lp, _JtJ_Parent, _JtJ_Lnz;
         std::vector<int> _perm_JtJ, _invPerm_JtJ;

         CCS_Matrix<double> _JtJ;
   }; // end struct SparseLevenbergOptimizer

   struct StdSparseLevenbergOptimizer : public SparseLevenbergOptimizer
   {
         StdSparseLevenbergOptimizer(int measurementDimension,
                                     int nParametersA, int paramDimensionA,
                                     int nParametersB, int paramDimensionB,
                                     int paramDimensionC,
                                     std::vector<int> const& correspondingParamA,
                                     std::vector<int> const& correspondingParamB)
            : SparseLevenbergOptimizer(measurementDimension, nParametersA, paramDimensionA,
                                       nParametersB, paramDimensionB, paramDimensionC,
                                       correspondingParamA, correspondingParamB),
              curParametersA(nParametersA, paramDimensionA), savedParametersA(nParametersA, paramDimensionA),
              curParametersB(nParametersB, paramDimensionB), savedParametersB(nParametersB, paramDimensionB),
              curParametersC(paramDimensionC), savedParametersC(paramDimensionC)
         { }

         virtual double getParameterLength() const
         {
            double res = 0.0;
            for (int i = 0; i < _nParametersA; ++i) res += sqrNorm_L2(curParametersA[i]);
            for (int j = 0; j < _nParametersB; ++j) res += sqrNorm_L2(curParametersB[j]);
            res += sqrNorm_L2(curParametersC);
            return sqrt(res);
         }

         virtual void updateParametersA(VectorArray<double> const& deltaAi)
         {
            for (int i = 0; i < _nParametersA; ++i) addVectors(deltaAi[i], curParametersA[i], curParametersA[i]);
         }

         virtual void updateParametersB(VectorArray<double> const& deltaBj)
         {
            for (int j = 0; j < _nParametersB; ++j) addVectors(deltaBj[j], curParametersB[j], curParametersB[j]);
         }

         virtual void updateParametersC(Vector<double> const& deltaC)
         {
            addVectors(deltaC, curParametersC, curParametersC);
         }

         virtual void saveAllParameters()
         {
            for (int i = 0; i < _nParametersA; ++i) savedParametersA[i] = curParametersA[i];
            for (int j = 0; j < _nParametersB; ++j) savedParametersB[j] = curParametersB[j];
            savedParametersC = curParametersC;
         }

         virtual void restoreAllParameters()
         {
            for (int i = 0; i < _nParametersA; ++i) curParametersA[i] = savedParametersA[i];
            for (int j = 0; j < _nParametersB; ++j) curParametersB[j] = savedParametersB[j];
            curParametersC = savedParametersC;
         }

         VectorArray<double> curParametersA, savedParametersA;
         VectorArray<double> curParametersB, savedParametersB;
         Vector<double>      curParametersC, savedParametersC;
   }; // end struct StdSparseLevenbergOptimizer

# endif

} // end namespace V3D

#endif