Welcome to mirror list, hosted at ThFree Co, Russian Federation.

edgecollapse.cpp « preprocessed « mantaflow « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 72c76ca9200fc4e9f683cff2735725e9d270ade7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700


// DO NOT EDIT !
// This file is generated using the MantaFlow preprocessor (prep generate).

/******************************************************************************
 *
 * MantaFlow fluid solver framework
 * Copyright 2011 Tobias Pfaff, Nils Thuerey
 *
 * This program is free software, distributed under the terms of the
 * Apache License, Version 2.0
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Mesh edge collapse and subdivision
 *
 ******************************************************************************/

/******************************************************************************/
// Copyright note:
//
// These functions (C) Chris Wojtan
// Long-term goal is to unify with his split&merge codebase
//
/******************************************************************************/

#include "edgecollapse.h"
#include <queue>

using namespace std;

namespace Manta {

// 8-point butterfly subdivision scheme (as described by Brochu&Bridson 2009)
Vec3 ButterflySubdivision(Mesh &m, const Corner &ca, const Corner &cb)
{
  Vec3 p = m.nodes(m.corners(ca.prev).node).pos + m.nodes(m.corners(ca.next).node).pos;
  Vec3 q = m.nodes(ca.node).pos + m.nodes(cb.node).pos;
  Vec3 r = m.nodes(m.corners(m.corners(ca.next).opposite).node).pos +
           m.nodes(m.corners(m.corners(ca.prev).opposite).node).pos +
           m.nodes(m.corners(m.corners(cb.next).opposite).node).pos +
           m.nodes(m.corners(m.corners(cb.prev).opposite).node).pos;
  return (8 * p + 2 * q - r) / 16.0;
}

// Modified Butterfly Subdivision Scheme from:
// Interpolating Subdivision for Meshes with Arbitrary Topology
// Denis Zorin, Peter Schroder, and Wim Sweldens
// input the Corner that satisfies the following:
//      c.prev.node is the extraordinary vertex,
//      and c.next.node is the other vertex involved in the subdivision
Vec3 OneSidedButterflySubdivision(Mesh &m, const int valence, const Corner &c)
{
  Vec3 out;
  Vec3 p0 = m.nodes(m.corners(c.prev).node).pos;
  Vec3 p1 = m.nodes(m.corners(c.next).node).pos;

  if (valence == 3) {
    Vec3 p2 = m.nodes(c.node).pos;
    Vec3 p3 = m.nodes(m.corners(m.corners(c.next).opposite).node).pos;
    out = (5.0 / 12.0) * p1 - (1.0 / 12.0) * (p2 + p3) + 0.75 * p0;
  }
  else if (valence == 4) {
    Vec3 p2 = m.nodes(m.corners(m.corners(c.next).opposite).node).pos;
    out = 0.375 * p1 - 0.125 * p2 + 0.75 * p0;
  }
  else {
    // rotate around extraordinary vertex,
    // calculate subdivision weights,
    // and interpolate vertex position
    double rv = 1.0 / (double)valence;
    out = 0.0;
    int current = c.prev;
    for (int j = 0; j < valence; j++) {
      double s = (0.25 + cos(2 * M_PI * j * rv) + 0.5 * cos(4 * M_PI * j * rv)) * rv;
      Vec3 p = m.nodes(m.corners(m.corners(current).prev).node).pos;

      out += s * p;
      current = m.corners(m.corners(m.corners(current).next).opposite).next;
    }
    out += 0.75 * m.nodes(m.corners(c.prev).node).pos;
  }
  return out;
}

// Modified Butterfly Subdivision Scheme from:
// Interpolating Subdivision for Meshes with Arbitrary Topology
// Denis Zorin, Peter Schroder, and Wim Sweldens
Vec3 ModifiedButterflySubdivision(Mesh &m,
                                  const Corner &ca,
                                  const Corner &cb,
                                  const Vec3 &fallback)
{
  // calculate the valence of the two parent vertices
  int start = ca.prev;
  int current = start;
  int valenceA = 0;
  do {
    valenceA++;
    int op = m.corners(m.corners(current).next).opposite;
    if (op < 0)
      return fallback;
    current = m.corners(op).next;
  } while (current != start);
  start = ca.next;
  current = start;
  int valenceB = 0;
  do {
    valenceB++;
    int op = m.corners(m.corners(current).next).opposite;
    if (op < 0)
      return fallback;
    current = m.corners(op).next;
  } while (current != start);

  // if both vertices have valence 6, use butterfly subdivision
  if (valenceA == 6 && valenceB == 6) {
    return ButterflySubdivision(m, ca, cb);
  }
  else if (valenceA == 6)  // use a one-sided scheme
  {
    return OneSidedButterflySubdivision(m, valenceB, cb);
  }
  else if (valenceB == 6)  // use a one-sided scheme
  {
    return OneSidedButterflySubdivision(m, valenceA, ca);
  }
  else  // average the results from two one-sided schemes
  {
    return 0.5 * (OneSidedButterflySubdivision(m, valenceA, ca) +
                  OneSidedButterflySubdivision(m, valenceB, cb));
  }
}

bool gAbort = false;

// collapse an edge on triangle "trinum".
// "which" is 0,1, or 2,
// where which==0 is the triangle edge from p0 to p1,
// which==1 is the triangle edge from p1 to p2,
// and which==2 is the triangle edge from p2 to p0,
void CollapseEdge(Mesh &m,
                  const int trinum,
                  const int which,
                  const Vec3 &edgevect,
                  const Vec3 &endpoint,
                  vector<int> &deletedNodes,
                  std::map<int, bool> &taintedTris,
                  int &numCollapses,
                  bool doTubeCutting)
{
  if (gAbort)
    return;
  // I wanted to draw a pretty picture of an edge collapse,
  // but I don't know how to make wacky angled lines in ASCII.
  // Instead, I will show the before case and tell you what needs to be done.

  //      BEFORE:
  //              *
  //             / \.
  //            /C0 \.
  //           /     \.
  //          /       \.
  //         /    B    \.
  //        /           \.
  //       /C1        C2 \.
  // P0 *---------------* P1
  //       \C2        C1 /
  //        \           /
  //         \    A    /
  //          \       /
  //           \     /
  //            \C0 /
  //             \ /
  //              *
  //
  //  We are going to collapse the edge between P0 and P1
  //      by deleting P1,
  //      and taking all references to P1,
  //          and rerouting them to P0 instead
  //
  //  What we need to do:
  //      Move position of P0
  //      Preserve connectivity in both triangles:
  //          (C1.opposite).opposite = C2.o
  //          (C2.opposite).opposite = C1.o
  //      Delete references to Corners of deleted triangles in both P0 and P1's Corner list
  //      Reassign references to P1:
  //          loop through P1 triangles:
  //              rename P1 references to P0 in p lists.
  //              rename Corner.v references
  //      Copy P1's list of Corners over to P0's list of Corners
  //      Delete P1

  Corner ca_old[3], cb_old[3];
  ca_old[0] = m.corners(trinum, which);
  ca_old[1] = m.corners(ca_old[0].next);
  ca_old[2] = m.corners(ca_old[0].prev);
  bool haveB = false;
  if (ca_old[0].opposite >= 0) {
    cb_old[0] = m.corners(ca_old[0].opposite);
    cb_old[1] = m.corners(cb_old[0].next);
    cb_old[2] = m.corners(cb_old[0].prev);
    haveB = true;
  }
  if (!haveB) {
    // for now, don't collapse
    return;
  }

  int P0 = ca_old[2].node;
  int P1 = ca_old[1].node;

  ///////////////
  // avoid creating nonmanifold edges
  bool nonmanifold = false;
  bool nonmanifold2 = false;

  set<int> &ring0 = m.get1Ring(P0).nodes;
  set<int> &ring1 = m.get1Ring(P1).nodes;

  // check for intersections of the 1-rings of P0,P1
  int cl = 0, commonVert = -1;
  for (set<int>::iterator it = ring1.begin(); it != ring1.end(); ++it)
    if (ring0.find(*it) != ring0.end()) {
      cl++;
      if (*it != ca_old[0].node && *it != cb_old[0].node)
        commonVert = *it;
    }

  nonmanifold = cl > 2;
  nonmanifold2 = cl > 3;

  if (nonmanifold && ca_old[1].opposite >= 0 && cb_old[1].opposite >= 0 &&
      ca_old[2].opposite >= 0 &&
      cb_old[2].opposite >= 0)  // collapsing this edge would create a non-manifold edge
  {
    if (nonmanifold2)
      return;

    bool topTet = false;
    bool botTet = false;
    // check if collapsing this edge will collapse a tet.
    if (m.corners(ca_old[1].opposite).node == m.corners(ca_old[2].opposite).node)
      botTet = true;

    if (m.corners(cb_old[1].opposite).node == m.corners(cb_old[2].opposite).node)
      topTet = true;

    if (topTet ^ botTet) {

      // safe pyramid case.
      // collapse the whole tet!
      // First collapse the top of the pyramid,
      // then carry on collapsing the original verts.
      Corner cc_old[3], cd_old[3];
      if (botTet)
        cc_old[0] = m.corners(ca_old[1].opposite);
      else  // topTet
        cc_old[0] = cb_old[2];
      cc_old[1] = m.corners(cc_old[0].next);
      cc_old[2] = m.corners(cc_old[0].prev);
      if (cc_old[0].opposite < 0)
        return;
      cd_old[0] = m.corners(cc_old[0].opposite);
      cd_old[1] = m.corners(cd_old[0].next);
      cd_old[2] = m.corners(cd_old[0].prev);
      int P2 = cc_old[2].node;
      int P3 = cc_old[1].node;

      // update tri props of all adjacent triangles of P0,P1 (do before CT updates!)
      for (int i = 0; i < m.numTriChannels(); i++) {
      };  // TODO: handleTriPropertyEdgeCollapse(trinum, P2,P3,  cc_old[0], cd_old[0]);

      m.mergeNode(P2, P3);

      // Preserve connectivity in both triangles
      if (cc_old[1].opposite >= 0)
        m.corners(cc_old[1].opposite).opposite = cc_old[2].opposite;
      if (cc_old[2].opposite >= 0)
        m.corners(cc_old[2].opposite).opposite = cc_old[1].opposite;
      if (cd_old[1].opposite >= 0)
        m.corners(cd_old[1].opposite).opposite = cd_old[2].opposite;
      if (cd_old[2].opposite >= 0)
        m.corners(cd_old[2].opposite).opposite = cd_old[1].opposite;

      ////////////////////
      // mark the two triangles and the one node for deletion
      int tmpTrinum = cc_old[0].tri;
      int tmpOthertri = cd_old[0].tri;
      m.removeTriFromLookup(tmpTrinum);
      m.removeTriFromLookup(tmpOthertri);
      taintedTris[tmpTrinum] = true;
      taintedTris[tmpOthertri] = true;
      deletedNodes.push_back(P3);

      numCollapses++;

      // recompute Corners for triangles A and B
      if (botTet)
        ca_old[0] = m.corners(ca_old[2].opposite);
      else
        ca_old[0] = m.corners(ca_old[1].prev);
      ca_old[1] = m.corners(ca_old[0].next);
      ca_old[2] = m.corners(ca_old[0].prev);
      cb_old[0] = m.corners(ca_old[0].opposite);
      cb_old[1] = m.corners(cb_old[0].next);
      cb_old[2] = m.corners(cb_old[0].prev);

      ///////////////
      // avoid creating nonmanifold edges... again
      ring0 = m.get1Ring(ca_old[2].node).nodes;
      ring1 = m.get1Ring(ca_old[1].node).nodes;

      // check for intersections of the 1-rings of P0,P1
      cl = 0;
      for (set<int>::iterator it = ring1.begin(); it != ring1.end(); ++it)
        if (*it != ca_old[0].node && ring0.find(*it) != ring0.end())
          cl++;

      if (cl > 2) {  // nonmanifold
        // this can happen if collapsing the first tet leads to another similar collapse that
        // requires the collapse of a tet. for now, just move on and pick this up later.

        // if the original component was very small, this first collapse could have led to a tiny
        // piece of nonmanifold geometry. in this case, just delete everything that remains.
        if (m.corners(ca_old[0].opposite).tri == cb_old[0].tri &&
            m.corners(ca_old[1].opposite).tri == cb_old[0].tri &&
            m.corners(ca_old[2].opposite).tri == cb_old[0].tri) {
          taintedTris[ca_old[0].tri] = true;
          taintedTris[cb_old[0].tri] = true;
          m.removeTriFromLookup(ca_old[0].tri);
          m.removeTriFromLookup(cb_old[0].tri);
          deletedNodes.push_back(ca_old[0].node);
          deletedNodes.push_back(ca_old[1].node);
          deletedNodes.push_back(ca_old[2].node);
        }
        return;
      }
    }
    else if (topTet && botTet && ca_old[1].opposite >= 0 && ca_old[2].opposite >= 0 &&
             cb_old[1].opposite >= 0 && cb_old[2].opposite >= 0) {
      if (!(m.corners(ca_old[1].opposite).node == m.corners(ca_old[2].opposite).node &&
            m.corners(cb_old[1].opposite).node == m.corners(cb_old[2].opposite).node &&
            (m.corners(ca_old[1].opposite).node == m.corners(cb_old[1].opposite).node ||
             (m.corners(ca_old[1].opposite).node == cb_old[0].node &&
              m.corners(cb_old[1].opposite).node == ca_old[0].node)))) {
        // just collapse one for now.

        // collapse the whole tet!
        // First collapse the top of the pyramid,
        // then carry on collapsing the original verts.
        Corner cc_old[3], cd_old[3];

        // collapse top
        {
          cc_old[0] = m.corners(ca_old[1].opposite);
          cc_old[1] = m.corners(cc_old[0].next);
          cc_old[2] = m.corners(cc_old[0].prev);
          if (cc_old[0].opposite < 0)
            return;
          cd_old[0] = m.corners(cc_old[0].opposite);
          cd_old[1] = m.corners(cd_old[0].next);
          cd_old[2] = m.corners(cd_old[0].prev);
          int P2 = cc_old[2].node;
          int P3 = cc_old[1].node;

          // update tri props of all adjacent triangles of P0,P1 (do before CT updates!)
          // TODO: handleTriPropertyEdgeCollapse(trinum, P2,P3,  cc_old[0], cd_old[0]);

          m.mergeNode(P2, P3);

          // Preserve connectivity in both triangles
          if (cc_old[1].opposite >= 0)
            m.corners(cc_old[1].opposite).opposite = cc_old[2].opposite;
          if (cc_old[2].opposite >= 0)
            m.corners(cc_old[2].opposite).opposite = cc_old[1].opposite;
          if (cd_old[1].opposite >= 0)
            m.corners(cd_old[1].opposite).opposite = cd_old[2].opposite;
          if (cd_old[2].opposite >= 0)
            m.corners(cd_old[2].opposite).opposite = cd_old[1].opposite;

          ////////////////////
          // mark the two triangles and the one node for deletion
          int tmpTrinum = cc_old[0].tri;
          int tmpOthertri = cd_old[0].tri;
          taintedTris[tmpTrinum] = true;
          taintedTris[tmpOthertri] = true;
          m.removeTriFromLookup(tmpTrinum);
          m.removeTriFromLookup(tmpOthertri);
          deletedNodes.push_back(P3);

          numCollapses++;
        }
        // then collapse bottom
        {
          // cc_old[0] = [ca_old[1].opposite;
          cc_old[0] = cb_old[2];
          cc_old[1] = m.corners(cc_old[0].next);
          cc_old[2] = m.corners(cc_old[0].prev);
          if (cc_old[0].opposite < 0)
            return;
          cd_old[0] = m.corners(cc_old[0].opposite);
          cd_old[1] = m.corners(cd_old[0].next);
          cd_old[2] = m.corners(cd_old[0].prev);
          int P2 = cc_old[2].node;
          int P3 = cc_old[1].node;

          // update tri props of all adjacent triangles of P0,P1 (do before CT updates!)
          // TODO: handleTriPropertyEdgeCollapse(trinum, P2,P3,  cc_old[0], cd_old[0]);

          m.mergeNode(P2, P3);

          // Preserve connectivity in both triangles
          if (cc_old[1].opposite >= 0)
            m.corners(cc_old[1].opposite).opposite = cc_old[2].opposite;
          if (cc_old[2].opposite >= 0)
            m.corners(cc_old[2].opposite).opposite = cc_old[1].opposite;
          if (cd_old[1].opposite >= 0)
            m.corners(cd_old[1].opposite).opposite = cd_old[2].opposite;
          if (cd_old[2].opposite >= 0)
            m.corners(cd_old[2].opposite).opposite = cd_old[1].opposite;

          ////////////////////
          // mark the two triangles and the one node for deletion
          int tmpTrinum = cc_old[0].tri;
          int tmpOthertri = cd_old[0].tri;
          taintedTris[tmpTrinum] = true;
          taintedTris[tmpOthertri] = true;
          deletedNodes.push_back(P3);

          numCollapses++;
        }

        // Though we've collapsed a lot of stuff, we still haven't collapsed the original edge.
        // At this point we still haven't guaranteed that this original collapse weill be safe.
        // quit for now, and we'll catch the remaining short edges the next time this function is
        // called.
        return;
      }
    }
    else if (doTubeCutting) {
      // tube case
      // cout<<"CollapseEdge:tube case" << endl;

      // find the edges that touch the common vert
      int P2 = commonVert;
      int P1P2 = -1, P2P1, P2P0 = -1, P0P2 = -1;  // corners across from the cutting seam
      int start = ca_old[0].next;
      int end = cb_old[0].prev;
      int current = start;
      do {
        // rotate around vertex P1 counter-clockwise
        int op = m.corners(m.corners(current).next).opposite;
        if (op < 0)
          errMsg("tube cutting failed, no opposite");
        current = m.corners(op).next;

        if (m.corners(m.corners(current).prev).node == commonVert)
          P1P2 = m.corners(current).next;
      } while (current != end);

      start = ca_old[0].prev;
      end = cb_old[0].next;
      current = start;
      do {
        // rotate around vertex P0 clockwise
        int op = m.corners(m.corners(current).prev).opposite;
        if (op < 0)
          errMsg("tube cutting failed, no opposite");

        current = m.corners(op).prev;
        if (m.corners(m.corners(current).next).node == commonVert)
          P2P0 = m.corners(current).prev;
      } while (current != end);

      if (P1P2 < 0 || P2P0 < 0)
        errMsg("tube cutting failed, ill geometry");

      P2P1 = m.corners(P1P2).opposite;
      P0P2 = m.corners(P2P0).opposite;

      // duplicate vertices on the top half of the cut,
      // and use them to split the tube at this seam
      int P0b = m.addNode(Node(m.nodes(P0).pos));
      int P1b = m.addNode(Node(m.nodes(P1).pos));
      int P2b = m.addNode(Node(m.nodes(P2).pos));
      for (int i = 0; i < m.numNodeChannels(); i++) {
        m.nodeChannel(i)->addInterpol(P0, P0, 0.5);
        m.nodeChannel(i)->addInterpol(P1, P1, 0.5);
        m.nodeChannel(i)->addInterpol(P2, P2, 0.5);
      }

      // offset the verts in the normal directions to avoid self intersections
      Vec3 offsetVec = cross(m.nodes(P1).pos - m.nodes(P0).pos, m.nodes(P2).pos - m.nodes(P0).pos);
      normalize(offsetVec);
      offsetVec *= 0.01;  // HACK:
      m.nodes(P0).pos -= offsetVec;
      m.nodes(P1).pos -= offsetVec;
      m.nodes(P2).pos -= offsetVec;
      m.nodes(P0b).pos += offsetVec;
      m.nodes(P1b).pos += offsetVec;
      m.nodes(P2b).pos += offsetVec;

      // create a list of all triangles which touch P0, P1, and P2 from the top,
      map<int, bool> topTris;
      start = cb_old[0].next;
      end = m.corners(P0P2).prev;
      current = start;
      topTris[start / 3] = true;
      do {
        // rotate around vertex P0 counter-clockwise
        current = m.corners(m.corners(m.corners(current).next).opposite).next;
        topTris[current / 3] = true;
      } while (current != end);
      start = m.corners(P0P2).next;
      end = m.corners(P2P1).prev;
      current = start;
      topTris[start / 3] = true;
      do {
        // rotate around vertex P0 counter-clockwise
        current = m.corners(m.corners(m.corners(current).next).opposite).next;
        topTris[current / 3] = true;
      } while (current != end);
      start = m.corners(P2P1).next;
      end = cb_old[0].prev;
      current = start;
      topTris[start / 3] = true;
      do {
        // rotate around vertex P0 counter-clockwise
        current = m.corners(m.corners(m.corners(current).next).opposite).next;
        topTris[current / 3] = true;
      } while (current != end);

      // create two new triangles,
      int Ta = m.addTri(Triangle(P0, P1, P2));
      int Tb = m.addTri(Triangle(P1b, P0b, P2b));
      for (int i = 0; i < m.numTriChannels(); i++) {
        m.triChannel(i)->addNew();
        m.triChannel(i)->addNew();
      }

      // sew the tris to close the cut on each side
      for (int c = 0; c < 3; c++)
        m.addCorner(Corner(Ta, m.tris(Ta).c[c]));
      for (int c = 0; c < 3; c++)
        m.addCorner(Corner(Tb, m.tris(Tb).c[c]));
      for (int c = 0; c < 3; c++) {
        m.corners(Ta, c).next = 3 * Ta + ((c + 1) % 3);
        m.corners(Ta, c).prev = 3 * Ta + ((c + 2) % 3);
        m.corners(Tb, c).next = 3 * Tb + ((c + 1) % 3);
        m.corners(Tb, c).prev = 3 * Tb + ((c + 2) % 3);
      }
      m.corners(Ta, 0).opposite = P1P2;
      m.corners(Ta, 1).opposite = P2P0;
      m.corners(Ta, 2).opposite = ca_old[1].prev;
      m.corners(Tb, 0).opposite = P0P2;
      m.corners(Tb, 1).opposite = P2P1;
      m.corners(Tb, 2).opposite = cb_old[1].prev;
      for (int c = 0; c < 3; c++) {
        m.corners(m.corners(Ta, c).opposite).opposite = 3 * Ta + c;
        m.corners(m.corners(Tb, c).opposite).opposite = 3 * Tb + c;
      }
      // replace P0,P1,P2 on the top with P0b,P1b,P2b.
      for (map<int, bool>::iterator tti = topTris.begin(); tti != topTris.end(); tti++) {
        // cout << "H " << tti->first << " : " << m.tris(tti->first).c[0] << " " <<
        // m.tris(tti->first).c[1] << " " << m.tris(tti->first).c[2] << " " << endl;
        for (int i = 0; i < 3; i++) {
          int cn = m.tris(tti->first).c[i];
          set<int> &ring = m.get1Ring(cn).nodes;

          if (ring.find(P0) != ring.end() && cn != P0 && cn != P1 && cn != P2 && cn != P0b &&
              cn != P1b && cn != P2b) {
            ring.erase(P0);
            ring.insert(P0b);
            m.get1Ring(P0).nodes.erase(cn);
            m.get1Ring(P0b).nodes.insert(cn);
          }
          if (ring.find(P1) != ring.end() && cn != P0 && cn != P1 && cn != P2 && cn != P0b &&
              cn != P1b && cn != P2b) {
            ring.erase(P1);
            ring.insert(P1b);
            m.get1Ring(P1).nodes.erase(cn);
            m.get1Ring(P1b).nodes.insert(cn);
          }
          if (ring.find(P2) != ring.end() && cn != P0 && cn != P1 && cn != P2 && cn != P0b &&
              cn != P1b && cn != P2b) {
            ring.erase(P2);
            ring.insert(P2b);
            m.get1Ring(P2).nodes.erase(cn);
            m.get1Ring(P2b).nodes.insert(cn);
          }
          if (cn == P0) {
            m.tris(tti->first).c[i] = P0b;
            m.corners(tti->first, i).node = P0b;
            m.get1Ring(P0).tris.erase(tti->first);
            m.get1Ring(P0b).tris.insert(tti->first);
          }
          else if (cn == P1) {
            m.tris(tti->first).c[i] = P1b;
            m.corners(tti->first, i).node = P1b;
            m.get1Ring(P1).tris.erase(tti->first);
            m.get1Ring(P1b).tris.insert(tti->first);
          }
          else if (cn == P2) {
            m.tris(tti->first).c[i] = P2b;
            m.corners(tti->first, i).node = P2b;
            m.get1Ring(P2).tris.erase(tti->first);
            m.get1Ring(P2b).tris.insert(tti->first);
          }
        }
      }

      // m.sanityCheck(true, &deletedNodes, &taintedTris);

      return;
    }
    return;
  }
  if (ca_old[1].opposite >= 0 && ca_old[2].opposite >= 0 && cb_old[1].opposite >= 0 &&
      cb_old[2].opposite >= 0 && ca_old[0].opposite >= 0 && cb_old[0].opposite >= 0 &&
      ((m.corners(ca_old[1].opposite).node ==
            m.corners(ca_old[2].opposite).node &&  // two-pyramid tubey case (6 tris, 5 verts)
        m.corners(cb_old[1].opposite).node == m.corners(cb_old[2].opposite).node &&
        (m.corners(ca_old[1].opposite).node == m.corners(cb_old[1].opposite).node ||
         (m.corners(ca_old[1].opposite).node == cb_old[0].node &&  // single tetrahedron case
          m.corners(cb_old[1].opposite).node == ca_old[0].node))) ||
       (m.corners(ca_old[0].opposite).tri == m.corners(cb_old[0].opposite).tri &&
        m.corners(ca_old[1].opposite).tri == m.corners(cb_old[0].opposite).tri &&
        m.corners(ca_old[2].opposite).tri ==
            m.corners(cb_old[0].opposite).tri  // nonmanifold: 2 tris, 3 verts
        && m.corners(cb_old[0].opposite).tri == m.corners(ca_old[0].opposite).tri &&
        m.corners(cb_old[1].opposite).tri == m.corners(ca_old[0].opposite).tri &&
        m.corners(cb_old[2].opposite).tri == m.corners(ca_old[0].opposite).tri))) {
    // both top and bottom are closed pyramid caps, or it is a single tet
    // delete the whole component!
    // flood fill to mark all triangles in the component
    map<int, bool> markedTris;
    queue<int> triQ;
    triQ.push(trinum);
    markedTris[trinum] = true;
    int iters = 0;
    while (!triQ.empty()) {
      int trival = triQ.front();
      triQ.pop();
      for (int i = 0; i < 3; i++) {
        int newtri = m.corners(m.corners(trival, i).opposite).tri;
        if (markedTris.find(newtri) == markedTris.end()) {
          triQ.push(newtri);
          markedTris[newtri] = true;
        }
      }
      iters++;
    }
    map<int, bool> markedverts;
    for (map<int, bool>::iterator mit = markedTris.begin(); mit != markedTris.end(); mit++) {
      taintedTris[mit->first] = true;
      markedverts[m.tris(mit->first).c[0]] = true;
      markedverts[m.tris(mit->first).c[1]] = true;
      markedverts[m.tris(mit->first).c[2]] = true;
    }
    for (map<int, bool>::iterator mit = markedverts.begin(); mit != markedverts.end(); mit++)
      deletedNodes.push_back(mit->first);
    return;
  }

  //////////////////////////
  // begin original edge collapse

  // update tri props of all adjacent triangles of P0,P1 (do before CT updates!)
  // TODO: handleTriPropertyEdgeCollapse(trinum, P0,P1,  ca_old[0], cb_old[0]);

  m.mergeNode(P0, P1);

  // Move position of P0
  m.nodes(P0).pos = endpoint + 0.5 * edgevect;

  // Preserve connectivity in both triangles
  if (ca_old[1].opposite >= 0)
    m.corners(ca_old[1].opposite).opposite = ca_old[2].opposite;
  if (ca_old[2].opposite >= 0)
    m.corners(ca_old[2].opposite).opposite = ca_old[1].opposite;
  if (haveB && cb_old[1].opposite >= 0)
    m.corners(cb_old[1].opposite).opposite = cb_old[2].opposite;
  if (haveB && cb_old[2].opposite >= 0)
    m.corners(cb_old[2].opposite).opposite = cb_old[1].opposite;

  ////////////////////
  // mark the two triangles and the one node for deletion
  taintedTris[ca_old[0].tri] = true;
  m.removeTriFromLookup(ca_old[0].tri);
  if (haveB) {
    taintedTris[cb_old[0].tri] = true;
    m.removeTriFromLookup(cb_old[0].tri);
  }
  deletedNodes.push_back(P1);
  numCollapses++;
}

}  // namespace Manta