Welcome to mirror list, hosted at ThFree Co, Russian Federation.

levelset.cpp « preprocessed « mantaflow « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 2645ebadd1ce85784c4c5939d82aa7ebf283548e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857


// DO NOT EDIT !
// This file is generated using the MantaFlow preprocessor (prep generate).

/******************************************************************************
 *
 * MantaFlow fluid solver framework
 * Copyright 2011 Tobias Pfaff, Nils Thuerey
 *
 * This program is free software, distributed under the terms of the
 * Apache License, Version 2.0
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Levelset
 *
 ******************************************************************************/

#include "levelset.h"
#include "fastmarch.h"
#include "kernel.h"
#include "mcubes.h"
#include "mesh.h"
#include <stack>

using namespace std;
namespace Manta {

//************************************************************************
// Helper functions and kernels for marching

static const int FlagInited = FastMarch<FmHeapEntryOut, +1>::FlagInited;

// neighbor lookup vectors
static const Vec3i neighbors[6] = {Vec3i(-1, 0, 0),
                                   Vec3i(1, 0, 0),
                                   Vec3i(0, -1, 0),
                                   Vec3i(0, 1, 0),
                                   Vec3i(0, 0, -1),
                                   Vec3i(0, 0, 1)};

struct InitFmIn : public KernelBase {
  InitFmIn(const FlagGrid &flags,
           Grid<int> &fmFlags,
           Grid<Real> &phi,
           bool ignoreWalls,
           int obstacleType)
      : KernelBase(&flags, 1),
        flags(flags),
        fmFlags(fmFlags),
        phi(phi),
        ignoreWalls(ignoreWalls),
        obstacleType(obstacleType)
  {
    runMessage();
    run();
  }
  inline void op(int i,
                 int j,
                 int k,
                 const FlagGrid &flags,
                 Grid<int> &fmFlags,
                 Grid<Real> &phi,
                 bool ignoreWalls,
                 int obstacleType) const
  {
    const IndexInt idx = flags.index(i, j, k);
    const Real v = phi[idx];
    if (ignoreWalls) {
      if (v >= 0. && ((flags[idx] & obstacleType) == 0))
        fmFlags[idx] = FlagInited;
      else
        fmFlags[idx] = 0;
    }
    else {
      if (v >= 0)
        fmFlags[idx] = FlagInited;
      else
        fmFlags[idx] = 0;
    }
  }
  inline const FlagGrid &getArg0()
  {
    return flags;
  }
  typedef FlagGrid type0;
  inline Grid<int> &getArg1()
  {
    return fmFlags;
  }
  typedef Grid<int> type1;
  inline Grid<Real> &getArg2()
  {
    return phi;
  }
  typedef Grid<Real> type2;
  inline bool &getArg3()
  {
    return ignoreWalls;
  }
  typedef bool type3;
  inline int &getArg4()
  {
    return obstacleType;
  }
  typedef int type4;
  void runMessage()
  {
    debMsg("Executing kernel InitFmIn ", 3);
    debMsg("Kernel range"
               << " x " << maxX << " y " << maxY << " z " << minZ << " - " << maxZ << " ",
           4);
  };
  void operator()(const tbb::blocked_range<IndexInt> &__r) const
  {
    const int _maxX = maxX;
    const int _maxY = maxY;
    if (maxZ > 1) {
      for (int k = __r.begin(); k != (int)__r.end(); k++)
        for (int j = 1; j < _maxY; j++)
          for (int i = 1; i < _maxX; i++)
            op(i, j, k, flags, fmFlags, phi, ignoreWalls, obstacleType);
    }
    else {
      const int k = 0;
      for (int j = __r.begin(); j != (int)__r.end(); j++)
        for (int i = 1; i < _maxX; i++)
          op(i, j, k, flags, fmFlags, phi, ignoreWalls, obstacleType);
    }
  }
  void run()
  {
    if (maxZ > 1)
      tbb::parallel_for(tbb::blocked_range<IndexInt>(minZ, maxZ), *this);
    else
      tbb::parallel_for(tbb::blocked_range<IndexInt>(1, maxY), *this);
  }
  const FlagGrid &flags;
  Grid<int> &fmFlags;
  Grid<Real> &phi;
  bool ignoreWalls;
  int obstacleType;
};

struct InitFmOut : public KernelBase {
  InitFmOut(const FlagGrid &flags,
            Grid<int> &fmFlags,
            Grid<Real> &phi,
            bool ignoreWalls,
            int obstacleType)
      : KernelBase(&flags, 1),
        flags(flags),
        fmFlags(fmFlags),
        phi(phi),
        ignoreWalls(ignoreWalls),
        obstacleType(obstacleType)
  {
    runMessage();
    run();
  }
  inline void op(int i,
                 int j,
                 int k,
                 const FlagGrid &flags,
                 Grid<int> &fmFlags,
                 Grid<Real> &phi,
                 bool ignoreWalls,
                 int obstacleType) const
  {
    const IndexInt idx = flags.index(i, j, k);
    const Real v = phi[idx];
    if (ignoreWalls) {
      fmFlags[idx] = (v < 0) ? FlagInited : 0;
      if ((flags[idx] & obstacleType) != 0) {
        fmFlags[idx] = 0;
        phi[idx] = 0;
      }
    }
    else {
      fmFlags[idx] = (v < 0) ? FlagInited : 0;
    }
  }
  inline const FlagGrid &getArg0()
  {
    return flags;
  }
  typedef FlagGrid type0;
  inline Grid<int> &getArg1()
  {
    return fmFlags;
  }
  typedef Grid<int> type1;
  inline Grid<Real> &getArg2()
  {
    return phi;
  }
  typedef Grid<Real> type2;
  inline bool &getArg3()
  {
    return ignoreWalls;
  }
  typedef bool type3;
  inline int &getArg4()
  {
    return obstacleType;
  }
  typedef int type4;
  void runMessage()
  {
    debMsg("Executing kernel InitFmOut ", 3);
    debMsg("Kernel range"
               << " x " << maxX << " y " << maxY << " z " << minZ << " - " << maxZ << " ",
           4);
  };
  void operator()(const tbb::blocked_range<IndexInt> &__r) const
  {
    const int _maxX = maxX;
    const int _maxY = maxY;
    if (maxZ > 1) {
      for (int k = __r.begin(); k != (int)__r.end(); k++)
        for (int j = 1; j < _maxY; j++)
          for (int i = 1; i < _maxX; i++)
            op(i, j, k, flags, fmFlags, phi, ignoreWalls, obstacleType);
    }
    else {
      const int k = 0;
      for (int j = __r.begin(); j != (int)__r.end(); j++)
        for (int i = 1; i < _maxX; i++)
          op(i, j, k, flags, fmFlags, phi, ignoreWalls, obstacleType);
    }
  }
  void run()
  {
    if (maxZ > 1)
      tbb::parallel_for(tbb::blocked_range<IndexInt>(minZ, maxZ), *this);
    else
      tbb::parallel_for(tbb::blocked_range<IndexInt>(1, maxY), *this);
  }
  const FlagGrid &flags;
  Grid<int> &fmFlags;
  Grid<Real> &phi;
  bool ignoreWalls;
  int obstacleType;
};

struct SetUninitialized : public KernelBase {
  SetUninitialized(const Grid<int> &flags,
                   Grid<int> &fmFlags,
                   Grid<Real> &phi,
                   const Real val,
                   int ignoreWalls,
                   int obstacleType)
      : KernelBase(&flags, 1),
        flags(flags),
        fmFlags(fmFlags),
        phi(phi),
        val(val),
        ignoreWalls(ignoreWalls),
        obstacleType(obstacleType)
  {
    runMessage();
    run();
  }
  inline void op(int i,
                 int j,
                 int k,
                 const Grid<int> &flags,
                 Grid<int> &fmFlags,
                 Grid<Real> &phi,
                 const Real val,
                 int ignoreWalls,
                 int obstacleType) const
  {
    if (ignoreWalls) {
      if ((fmFlags(i, j, k) != FlagInited) && ((flags(i, j, k) & obstacleType) == 0)) {
        phi(i, j, k) = val;
      }
    }
    else {
      if ((fmFlags(i, j, k) != FlagInited))
        phi(i, j, k) = val;
    }
  }
  inline const Grid<int> &getArg0()
  {
    return flags;
  }
  typedef Grid<int> type0;
  inline Grid<int> &getArg1()
  {
    return fmFlags;
  }
  typedef Grid<int> type1;
  inline Grid<Real> &getArg2()
  {
    return phi;
  }
  typedef Grid<Real> type2;
  inline const Real &getArg3()
  {
    return val;
  }
  typedef Real type3;
  inline int &getArg4()
  {
    return ignoreWalls;
  }
  typedef int type4;
  inline int &getArg5()
  {
    return obstacleType;
  }
  typedef int type5;
  void runMessage()
  {
    debMsg("Executing kernel SetUninitialized ", 3);
    debMsg("Kernel range"
               << " x " << maxX << " y " << maxY << " z " << minZ << " - " << maxZ << " ",
           4);
  };
  void operator()(const tbb::blocked_range<IndexInt> &__r) const
  {
    const int _maxX = maxX;
    const int _maxY = maxY;
    if (maxZ > 1) {
      for (int k = __r.begin(); k != (int)__r.end(); k++)
        for (int j = 1; j < _maxY; j++)
          for (int i = 1; i < _maxX; i++)
            op(i, j, k, flags, fmFlags, phi, val, ignoreWalls, obstacleType);
    }
    else {
      const int k = 0;
      for (int j = __r.begin(); j != (int)__r.end(); j++)
        for (int i = 1; i < _maxX; i++)
          op(i, j, k, flags, fmFlags, phi, val, ignoreWalls, obstacleType);
    }
  }
  void run()
  {
    if (maxZ > 1)
      tbb::parallel_for(tbb::blocked_range<IndexInt>(minZ, maxZ), *this);
    else
      tbb::parallel_for(tbb::blocked_range<IndexInt>(1, maxY), *this);
  }
  const Grid<int> &flags;
  Grid<int> &fmFlags;
  Grid<Real> &phi;
  const Real val;
  int ignoreWalls;
  int obstacleType;
};

template<bool inward>
inline bool isAtInterface(const Grid<int> &fmFlags, Grid<Real> &phi, const Vec3i &p)
{
  // check for interface
  int max = phi.is3D() ? 6 : 4;
  for (int nb = 0; nb < max; nb++) {
    const Vec3i pn(p + neighbors[nb]);
    if (!fmFlags.isInBounds(pn))
      continue;

    if (fmFlags(pn) != FlagInited)
      continue;
    if ((inward && phi(pn) >= 0.) || (!inward && phi(pn) < 0.))
      return true;
  }
  return false;
}

//************************************************************************
// Levelset class def

LevelsetGrid::LevelsetGrid(FluidSolver *parent, bool show) : Grid<Real>(parent, show)
{
  mType = (GridType)(TypeLevelset | TypeReal);
}

LevelsetGrid::LevelsetGrid(FluidSolver *parent, Real *data, bool show)
    : Grid<Real>(parent, data, show)
{
  mType = (GridType)(TypeLevelset | TypeReal);
}

Real LevelsetGrid::invalidTimeValue()
{
  return FastMarch<FmHeapEntryOut, 1>::InvalidTime();
}

//! Kernel: perform levelset union
struct KnJoin : public KernelBase {
  KnJoin(Grid<Real> &a, const Grid<Real> &b) : KernelBase(&a, 0), a(a), b(b)
  {
    runMessage();
    run();
  }
  inline void op(IndexInt idx, Grid<Real> &a, const Grid<Real> &b) const
  {
    a[idx] = min(a[idx], b[idx]);
  }
  inline Grid<Real> &getArg0()
  {
    return a;
  }
  typedef Grid<Real> type0;
  inline const Grid<Real> &getArg1()
  {
    return b;
  }
  typedef Grid<Real> type1;
  void runMessage()
  {
    debMsg("Executing kernel KnJoin ", 3);
    debMsg("Kernel range"
               << " x " << maxX << " y " << maxY << " z " << minZ << " - " << maxZ << " ",
           4);
  };
  void operator()(const tbb::blocked_range<IndexInt> &__r) const
  {
    for (IndexInt idx = __r.begin(); idx != (IndexInt)__r.end(); idx++)
      op(idx, a, b);
  }
  void run()
  {
    tbb::parallel_for(tbb::blocked_range<IndexInt>(0, size), *this);
  }
  Grid<Real> &a;
  const Grid<Real> &b;
};
void LevelsetGrid::join(const LevelsetGrid &o)
{
  KnJoin(*this, o);
}

//! subtract b, note does not preserve SDF!
struct KnSubtract : public KernelBase {
  KnSubtract(Grid<Real> &a, const Grid<Real> &b) : KernelBase(&a, 0), a(a), b(b)
  {
    runMessage();
    run();
  }
  inline void op(IndexInt idx, Grid<Real> &a, const Grid<Real> &b) const
  {
    if (b[idx] < 0.)
      a[idx] = b[idx] * -1.;
  }
  inline Grid<Real> &getArg0()
  {
    return a;
  }
  typedef Grid<Real> type0;
  inline const Grid<Real> &getArg1()
  {
    return b;
  }
  typedef Grid<Real> type1;
  void runMessage()
  {
    debMsg("Executing kernel KnSubtract ", 3);
    debMsg("Kernel range"
               << " x " << maxX << " y " << maxY << " z " << minZ << " - " << maxZ << " ",
           4);
  };
  void operator()(const tbb::blocked_range<IndexInt> &__r) const
  {
    for (IndexInt idx = __r.begin(); idx != (IndexInt)__r.end(); idx++)
      op(idx, a, b);
  }
  void run()
  {
    tbb::parallel_for(tbb::blocked_range<IndexInt>(0, size), *this);
  }
  Grid<Real> &a;
  const Grid<Real> &b;
};
void LevelsetGrid::subtract(const LevelsetGrid &o)
{
  KnSubtract(*this, o);
}

//! re-init levelset and extrapolate velocities (in & out)
//  note - uses flags to identify border (could also be done based on ls values)
static void doReinitMarch(Grid<Real> &phi,
                          const FlagGrid &flags,
                          Real maxTime,
                          MACGrid *velTransport,
                          bool ignoreWalls,
                          bool correctOuterLayer,
                          int obstacleType)
{
  const int dim = (phi.is3D() ? 3 : 2);
  Grid<int> fmFlags(phi.getParent());

  FastMarch<FmHeapEntryIn, -1> marchIn(flags, fmFlags, phi, maxTime, NULL);

  // march inside
  InitFmIn(flags, fmFlags, phi, ignoreWalls, obstacleType);

  FOR_IJK_BND(flags, 1)
  {
    if (fmFlags(i, j, k) == FlagInited)
      continue;
    if (ignoreWalls && ((flags(i, j, k) & obstacleType) != 0))
      continue;
    const Vec3i p(i, j, k);

    if (isAtInterface<true>(fmFlags, phi, p)) {
      // set value
      fmFlags(p) = FlagInited;

      // add neighbors that are not at the interface
      for (int nb = 0; nb < 2 * dim; nb++) {
        const Vec3i pn(p + neighbors[nb]);  // index always valid due to bnd=1
        if (ignoreWalls && ((flags.get(pn) & obstacleType) != 0))
          continue;

        // check neighbors of neighbor
        if (phi(pn) < 0. && !isAtInterface<true>(fmFlags, phi, pn)) {
          marchIn.addToList(pn, p);
        }
      }
    }
  }
  marchIn.performMarching();
  // done with inwards marching

  // now march out...

  // set un initialized regions
  SetUninitialized(flags, fmFlags, phi, -maxTime - 1., ignoreWalls, obstacleType);

  InitFmOut(flags, fmFlags, phi, ignoreWalls, obstacleType);

  FastMarch<FmHeapEntryOut, +1> marchOut(flags, fmFlags, phi, maxTime, velTransport);

  // by default, correctOuterLayer is on
  if (correctOuterLayer) {
    // normal version, inwards march is done, now add all outside values (0..2] to list
    // note, this might move the interface a bit! but keeps a nice signed distance field...
    FOR_IJK_BND(flags, 1)
    {
      if (ignoreWalls && ((flags(i, j, k) & obstacleType) != 0))
        continue;
      const Vec3i p(i, j, k);

      // check nbs
      for (int nb = 0; nb < 2 * dim; nb++) {
        const Vec3i pn(p + neighbors[nb]);  // index always valid due to bnd=1

        if (fmFlags(pn) != FlagInited)
          continue;
        if (ignoreWalls && ((flags.get(pn) & obstacleType)) != 0)
          continue;

        const Real nbPhi = phi(pn);

        // only add nodes near interface, not e.g. outer boundary vs. invalid region
        if (nbPhi < 0 && nbPhi >= -2)
          marchOut.addToList(p, pn);
      }
    }
  }
  else {
    // alternative version, keep interface, do not distort outer cells
    // add all ouside values, but not those at the IF layer
    FOR_IJK_BND(flags, 1)
    {
      if (ignoreWalls && ((flags(i, j, k) & obstacleType) != 0))
        continue;

      // only look at ouside values
      const Vec3i p(i, j, k);
      if (phi(p) < 0)
        continue;

      if (isAtInterface<false>(fmFlags, phi, p)) {
        // now add all non, interface neighbors
        fmFlags(p) = FlagInited;

        // add neighbors that are not at the interface
        for (int nb = 0; nb < 2 * dim; nb++) {
          const Vec3i pn(p + neighbors[nb]);  // index always valid due to bnd=1
          if (ignoreWalls && ((flags.get(pn) & obstacleType) != 0))
            continue;

          // check neighbors of neighbor
          if (phi(pn) > 0. && !isAtInterface<false>(fmFlags, phi, pn)) {
            marchOut.addToList(pn, p);
          }
        }
      }
    }
  }
  marchOut.performMarching();

  // set un initialized regions
  SetUninitialized(flags, fmFlags, phi, +maxTime + 1., ignoreWalls, obstacleType);
}

//! call for levelset grids & external real grids

void LevelsetGrid::reinitMarching(const FlagGrid &flags,
                                  Real maxTime,
                                  MACGrid *velTransport,
                                  bool ignoreWalls,
                                  bool correctOuterLayer,
                                  int obstacleType)
{
  doReinitMarch(*this, flags, maxTime, velTransport, ignoreWalls, correctOuterLayer, obstacleType);
}

void LevelsetGrid::initFromFlags(const FlagGrid &flags, bool ignoreWalls)
{
  FOR_IDX(*this)
  {
    if (flags.isFluid(idx) || (ignoreWalls && flags.isObstacle(idx)))
      mData[idx] = -0.5;
    else
      mData[idx] = 0.5;
  }
}

void LevelsetGrid::fillHoles(int maxDepth, int boundaryWidth)
{
  Real curVal, i1, i2, j1, j2, k1, k2;
  Vec3i c, cTmp;
  std::stack<Vec3i> undoPos;
  std::stack<Real> undoVal;
  std::stack<Vec3i> todoPos;

  FOR_IJK_BND(*this, boundaryWidth)
  {

    curVal = mData[index(i, j, k)];
    i1 = mData[index(i - 1, j, k)];
    i2 = mData[index(i + 1, j, k)];
    j1 = mData[index(i, j - 1, k)];
    j2 = mData[index(i, j + 1, k)];
    k1 = mData[index(i, j, k - 1)];
    k2 = mData[index(i, j, k + 1)];

    /* Skip cells inside and cells outside with no inside neighbours early */
    if (curVal < 0.)
      continue;
    if (curVal > 0. && i1 > 0. && i2 > 0. && j1 > 0. && j2 > 0. && k1 > 0. && k2 > 0.)
      continue;

    /* Cell at c is positive (outside) and has at least one negative (inside) neighbour cell */
    c = Vec3i(i, j, k);

    /* Current cell is outside and has inside neighbour(s) */
    undoPos.push(c);
    undoVal.push(curVal);
    todoPos.push(c);

    /* Enforce negative cell - if search depth gets exceeded this will be reverted to the original
     * value */
    mData[index(c.x, c.y, c.z)] = -0.5;

    while (!todoPos.empty()) {
      todoPos.pop();

      /* Add neighbouring positive (inside) cells to stacks and set negavtive cell value */
      if (c.x > 0 && mData[index(c.x - 1, c.y, c.z)] > 0.) {
        cTmp = Vec3i(c.x - 1, c.y, c.z);
        undoPos.push(cTmp);
        undoVal.push(mData[index(cTmp)]);
        todoPos.push(cTmp);
        mData[index(cTmp)] = -0.5;
      }
      if (c.y > 0 && mData[index(c.x, c.y - 1, c.z)] > 0.) {
        cTmp = Vec3i(c.x, c.y - 1, c.z);
        undoPos.push(cTmp);
        undoVal.push(mData[index(cTmp)]);
        todoPos.push(cTmp);
        mData[index(cTmp)] = -0.5;
      }
      if (c.z > 0 && mData[index(c.x, c.y, c.z - 1)] > 0.) {
        cTmp = Vec3i(c.x, c.y, c.z - 1);
        undoPos.push(cTmp);
        undoVal.push(mData[index(cTmp)]);
        todoPos.push(cTmp);
        mData[index(cTmp)] = -0.5;
      }
      if (c.x < (*this).getSizeX() - 1 && mData[index(c.x + 1, c.y, c.z)] > 0.) {
        cTmp = Vec3i(c.x + 1, c.y, c.z);
        undoPos.push(cTmp);
        undoVal.push(mData[index(cTmp)]);
        todoPos.push(cTmp);
        mData[index(cTmp)] = -0.5;
      }
      if (c.y < (*this).getSizeY() - 1 && mData[index(c.x, c.y + 1, c.z)] > 0.) {
        cTmp = Vec3i(c.x, c.y + 1, c.z);
        undoPos.push(cTmp);
        undoVal.push(mData[index(cTmp)]);
        todoPos.push(cTmp);
        mData[index(cTmp)] = -0.5;
      }
      if (c.z < (*this).getSizeZ() - 1 && mData[index(c.x, c.y, c.z + 1)] > 0.) {
        cTmp = Vec3i(c.x, c.y, c.z + 1);
        undoPos.push(cTmp);
        undoVal.push(mData[index(cTmp)]);
        todoPos.push(cTmp);
        mData[index(cTmp)] = -0.5;
      }

      /* Restore original value in cells if undo needed ie once cell undo count exceeds given limit
       */
      if (undoPos.size() > maxDepth) {
        /* Clear todo stack */
        while (!todoPos.empty()) {
          todoPos.pop();
        }
        /* Clear undo stack and revert value */
        while (!undoPos.empty()) {
          c = undoPos.top();
          curVal = undoVal.top();
          undoPos.pop();
          undoVal.pop();
          mData[index(c.x, c.y, c.z)] = curVal;
        }
        break;
      }

      /* Ensure that undo stack is cleared at the end if no more items in todo stack left */
      if (todoPos.empty()) {
        while (!undoPos.empty()) {
          undoPos.pop();
        }
        while (!undoVal.empty()) {
          undoVal.pop();
        }
      }
      /* Pop value for next while iteration */
      else {
        c = todoPos.top();
      }
    }
  }
}

//! run marching cubes to create a mesh for the 0-levelset
void LevelsetGrid::createMesh(Mesh &mesh)
{
  assertMsg(is3D(), "Only 3D grids supported so far");

  mesh.clear();

  const Real invalidTime = invalidTimeValue();
  const Real isoValue = 1e-4;

  // create some temp grids
  Grid<int> edgeVX(mParent);
  Grid<int> edgeVY(mParent);
  Grid<int> edgeVZ(mParent);

  for (int i = 0; i < mSize.x - 1; i++)
    for (int j = 0; j < mSize.y - 1; j++)
      for (int k = 0; k < mSize.z - 1; k++) {
        Real value[8] = {get(i, j, k),
                         get(i + 1, j, k),
                         get(i + 1, j + 1, k),
                         get(i, j + 1, k),
                         get(i, j, k + 1),
                         get(i + 1, j, k + 1),
                         get(i + 1, j + 1, k + 1),
                         get(i, j + 1, k + 1)};

        // build lookup index, check for invalid times
        bool skip = false;
        int cubeIdx = 0;
        for (int l = 0; l < 8; l++) {
          value[l] *= -1;
          if (-value[l] <= invalidTime)
            skip = true;
          if (value[l] < isoValue)
            cubeIdx |= 1 << l;
        }
        if (skip || (mcEdgeTable[cubeIdx] == 0))
          continue;

        // where to look up if this point already exists
        int triIndices[12];
        int *eVert[12] = {&edgeVX(i, j, k),
                          &edgeVY(i + 1, j, k),
                          &edgeVX(i, j + 1, k),
                          &edgeVY(i, j, k),
                          &edgeVX(i, j, k + 1),
                          &edgeVY(i + 1, j, k + 1),
                          &edgeVX(i, j + 1, k + 1),
                          &edgeVY(i, j, k + 1),
                          &edgeVZ(i, j, k),
                          &edgeVZ(i + 1, j, k),
                          &edgeVZ(i + 1, j + 1, k),
                          &edgeVZ(i, j + 1, k)};

        const Vec3 pos[9] = {Vec3(i, j, k),
                             Vec3(i + 1, j, k),
                             Vec3(i + 1, j + 1, k),
                             Vec3(i, j + 1, k),
                             Vec3(i, j, k + 1),
                             Vec3(i + 1, j, k + 1),
                             Vec3(i + 1, j + 1, k + 1),
                             Vec3(i, j + 1, k + 1)};

        for (int e = 0; e < 12; e++) {
          if (mcEdgeTable[cubeIdx] & (1 << e)) {
            // vertex already calculated ?
            if (*eVert[e] == 0) {
              // interpolate edge
              const int e1 = mcEdges[e * 2];
              const int e2 = mcEdges[e * 2 + 1];
              const Vec3 p1 = pos[e1];        // scalar field pos 1
              const Vec3 p2 = pos[e2];        // scalar field pos 2
              const float valp1 = value[e1];  // scalar field val 1
              const float valp2 = value[e2];  // scalar field val 2
              const float mu = (isoValue - valp1) / (valp2 - valp1);

              // init isolevel vertex
              Node vertex;
              vertex.pos = p1 + (p2 - p1) * mu + Vec3(Real(0.5));
              vertex.normal = getNormalized(
                  getGradient(
                      *this, i + cubieOffsetX[e1], j + cubieOffsetY[e1], k + cubieOffsetZ[e1]) *
                      (1.0 - mu) +
                  getGradient(
                      *this, i + cubieOffsetX[e2], j + cubieOffsetY[e2], k + cubieOffsetZ[e2]) *
                      (mu));

              triIndices[e] = mesh.addNode(vertex) + 1;

              // store vertex
              *eVert[e] = triIndices[e];
            }
            else {
              // retrieve  from vert array
              triIndices[e] = *eVert[e];
            }
          }
        }

        // Create the triangles...
        for (int e = 0; mcTriTable[cubeIdx][e] != -1; e += 3) {
          mesh.addTri(Triangle(triIndices[mcTriTable[cubeIdx][e + 0]] - 1,
                               triIndices[mcTriTable[cubeIdx][e + 1]] - 1,
                               triIndices[mcTriTable[cubeIdx][e + 2]] - 1));
        }
      }

  // mesh.rebuildCorners();
  // mesh.rebuildLookup();

  // Update mdata fields
  mesh.updateDataFields();
}

}  // namespace Manta