Welcome to mirror list, hosted at ThFree Co, Russian Federation.

advection.cpp « plugin « preprocessed « mantaflow « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 6a548841bef48246aaacf598c8c2c6b6078fd6cc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524


// DO NOT EDIT !
// This file is generated using the MantaFlow preprocessor (prep generate).

/******************************************************************************
 *
 * MantaFlow fluid solver framework
 * Copyright 2011-2015 Tobias Pfaff, Nils Thuerey
 *
 * This program is free software, distributed under the terms of the
 * Apache License, Version 2.0
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Plugins for advection
 *
 ******************************************************************************/

#include "vectorbase.h"
#include "grid.h"
#include "kernel.h"
#include <limits>

using namespace std;

namespace Manta {

//! Semi-Lagrange interpolation kernel

template<class T> struct SemiLagrange : public KernelBase {
  SemiLagrange(const FlagGrid &flags,
               const MACGrid &vel,
               Grid<T> &dst,
               const Grid<T> &src,
               Real dt,
               bool isLevelset,
               int orderSpace,
               int orderTrace)
      : KernelBase(&flags, 1),
        flags(flags),
        vel(vel),
        dst(dst),
        src(src),
        dt(dt),
        isLevelset(isLevelset),
        orderSpace(orderSpace),
        orderTrace(orderTrace)
  {
    runMessage();
    run();
  }
  inline void op(int i,
                 int j,
                 int k,
                 const FlagGrid &flags,
                 const MACGrid &vel,
                 Grid<T> &dst,
                 const Grid<T> &src,
                 Real dt,
                 bool isLevelset,
                 int orderSpace,
                 int orderTrace)
  {
    if (orderTrace == 1) {
      // traceback position
      Vec3 pos = Vec3(i + 0.5f, j + 0.5f, k + 0.5f) - vel.getCentered(i, j, k) * dt;
      dst(i, j, k) = src.getInterpolatedHi(pos, orderSpace);
    }
    else if (orderTrace == 2) {
      // backtracing using explicit midpoint
      Vec3 p0 = Vec3(i + 0.5f, j + 0.5f, k + 0.5f);
      Vec3 p1 = p0 - vel.getCentered(i, j, k) * dt * 0.5;
      Vec3 p2 = p0 - vel.getInterpolated(p1) * dt;
      dst(i, j, k) = src.getInterpolatedHi(p2, orderSpace);
    }
    else {
      assertMsg(false, "Unknown backtracing order " << orderTrace);
    }
  }
  inline const FlagGrid &getArg0()
  {
    return flags;
  }
  typedef FlagGrid type0;
  inline const MACGrid &getArg1()
  {
    return vel;
  }
  typedef MACGrid type1;
  inline Grid<T> &getArg2()
  {
    return dst;
  }
  typedef Grid<T> type2;
  inline const Grid<T> &getArg3()
  {
    return src;
  }
  typedef Grid<T> type3;
  inline Real &getArg4()
  {
    return dt;
  }
  typedef Real type4;
  inline bool &getArg5()
  {
    return isLevelset;
  }
  typedef bool type5;
  inline int &getArg6()
  {
    return orderSpace;
  }
  typedef int type6;
  inline int &getArg7()
  {
    return orderTrace;
  }
  typedef int type7;
  void runMessage(){};
  void run()
  {
    const int _maxX = maxX;
    const int _maxY = maxY;
    if (maxZ > 1) {

#pragma omp parallel
      {

#pragma omp for
        for (int k = minZ; k < maxZ; k++)
          for (int j = 1; j < _maxY; j++)
            for (int i = 1; i < _maxX; i++)
              op(i, j, k, flags, vel, dst, src, dt, isLevelset, orderSpace, orderTrace);
      }
    }
    else {
      const int k = 0;
#pragma omp parallel
      {

#pragma omp for
        for (int j = 1; j < _maxY; j++)
          for (int i = 1; i < _maxX; i++)
            op(i, j, k, flags, vel, dst, src, dt, isLevelset, orderSpace, orderTrace);
      }
    }
  }
  const FlagGrid &flags;
  const MACGrid &vel;
  Grid<T> &dst;
  const Grid<T> &src;
  Real dt;
  bool isLevelset;
  int orderSpace;
  int orderTrace;
};

//! Semi-Lagrange interpolation kernel for MAC grids

struct SemiLagrangeMAC : public KernelBase {
  SemiLagrangeMAC(const FlagGrid &flags,
                  const MACGrid &vel,
                  MACGrid &dst,
                  const MACGrid &src,
                  Real dt,
                  int orderSpace,
                  int orderTrace)
      : KernelBase(&flags, 1),
        flags(flags),
        vel(vel),
        dst(dst),
        src(src),
        dt(dt),
        orderSpace(orderSpace),
        orderTrace(orderTrace)
  {
    runMessage();
    run();
  }
  inline void op(int i,
                 int j,
                 int k,
                 const FlagGrid &flags,
                 const MACGrid &vel,
                 MACGrid &dst,
                 const MACGrid &src,
                 Real dt,
                 int orderSpace,
                 int orderTrace)
  {
    if (orderTrace == 1) {
      // get currect velocity at MAC position
      // no need to shift xpos etc. as lookup field is also shifted
      Vec3 xpos = Vec3(i + 0.5f, j + 0.5f, k + 0.5f) - vel.getAtMACX(i, j, k) * dt;
      Real vx = src.getInterpolatedComponentHi<0>(xpos, orderSpace);
      Vec3 ypos = Vec3(i + 0.5f, j + 0.5f, k + 0.5f) - vel.getAtMACY(i, j, k) * dt;
      Real vy = src.getInterpolatedComponentHi<1>(ypos, orderSpace);
      Vec3 zpos = Vec3(i + 0.5f, j + 0.5f, k + 0.5f) - vel.getAtMACZ(i, j, k) * dt;
      Real vz = src.getInterpolatedComponentHi<2>(zpos, orderSpace);

      dst(i, j, k) = Vec3(vx, vy, vz);
    }
    else if (orderTrace == 2) {
      Vec3 p0 = Vec3(i + 0.5, j + 0.5, k + 0.5);
      Vec3 xp0 = Vec3(i, j + 0.5f, k + 0.5f);
      Vec3 xp1 = xp0 - src.getAtMACX(i, j, k) * dt * 0.5;
      Vec3 xp2 = p0 - src.getInterpolated(xp1) * dt;
      Real vx = src.getInterpolatedComponentHi<0>(xp2, orderSpace);
      Vec3 yp0 = Vec3(i + 0.5f, j, k + 0.5f);
      Vec3 yp1 = yp0 - src.getAtMACY(i, j, k) * dt * 0.5;
      Vec3 yp2 = p0 - src.getInterpolated(yp1) * dt;
      Real vy = src.getInterpolatedComponentHi<1>(yp2, orderSpace);
      Vec3 zp0 = Vec3(i + 0.5f, j + 0.5f, k);
      Vec3 zp1 = zp0 - src.getAtMACZ(i, j, k) * dt * 0.5;
      Vec3 zp2 = p0 - src.getInterpolated(zp1) * dt;
      Real vz = src.getInterpolatedComponentHi<2>(zp2, orderSpace);

      dst(i, j, k) = Vec3(vx, vy, vz);
    }
    else {
      assertMsg(false, "Unknown backtracing order " << orderTrace);
    }
  }
  inline const FlagGrid &getArg0()
  {
    return flags;
  }
  typedef FlagGrid type0;
  inline const MACGrid &getArg1()
  {
    return vel;
  }
  typedef MACGrid type1;
  inline MACGrid &getArg2()
  {
    return dst;
  }
  typedef MACGrid type2;
  inline const MACGrid &getArg3()
  {
    return src;
  }
  typedef MACGrid type3;
  inline Real &getArg4()
  {
    return dt;
  }
  typedef Real type4;
  inline int &getArg5()
  {
    return orderSpace;
  }
  typedef int type5;
  inline int &getArg6()
  {
    return orderTrace;
  }
  typedef int type6;
  void runMessage(){};
  void run()
  {
    const int _maxX = maxX;
    const int _maxY = maxY;
    if (maxZ > 1) {

#pragma omp parallel
      {

#pragma omp for
        for (int k = minZ; k < maxZ; k++)
          for (int j = 1; j < _maxY; j++)
            for (int i = 1; i < _maxX; i++)
              op(i, j, k, flags, vel, dst, src, dt, orderSpace, orderTrace);
      }
    }
    else {
      const int k = 0;
#pragma omp parallel
      {

#pragma omp for
        for (int j = 1; j < _maxY; j++)
          for (int i = 1; i < _maxX; i++)
            op(i, j, k, flags, vel, dst, src, dt, orderSpace, orderTrace);
      }
    }
  }
  const FlagGrid &flags;
  const MACGrid &vel;
  MACGrid &dst;
  const MACGrid &src;
  Real dt;
  int orderSpace;
  int orderTrace;
};

//! Kernel: Correct based on forward and backward SL steps (for both centered & mac grids)

template<class T> struct MacCormackCorrect : public KernelBase {
  MacCormackCorrect(const FlagGrid &flags,
                    Grid<T> &dst,
                    const Grid<T> &old,
                    const Grid<T> &fwd,
                    const Grid<T> &bwd,
                    Real strength,
                    bool isLevelSet,
                    bool isMAC = false)
      : KernelBase(&flags, 0),
        flags(flags),
        dst(dst),
        old(old),
        fwd(fwd),
        bwd(bwd),
        strength(strength),
        isLevelSet(isLevelSet),
        isMAC(isMAC)
  {
    runMessage();
    run();
  }
  inline void op(IndexInt idx,
                 const FlagGrid &flags,
                 Grid<T> &dst,
                 const Grid<T> &old,
                 const Grid<T> &fwd,
                 const Grid<T> &bwd,
                 Real strength,
                 bool isLevelSet,
                 bool isMAC = false)
  {
    dst[idx] = fwd[idx];

    if (flags.isFluid(idx)) {
      // only correct inside fluid region; note, strenth of correction can be modified here
      dst[idx] += strength * 0.5 * (old[idx] - bwd[idx]);
    }
  }
  inline const FlagGrid &getArg0()
  {
    return flags;
  }
  typedef FlagGrid type0;
  inline Grid<T> &getArg1()
  {
    return dst;
  }
  typedef Grid<T> type1;
  inline const Grid<T> &getArg2()
  {
    return old;
  }
  typedef Grid<T> type2;
  inline const Grid<T> &getArg3()
  {
    return fwd;
  }
  typedef Grid<T> type3;
  inline const Grid<T> &getArg4()
  {
    return bwd;
  }
  typedef Grid<T> type4;
  inline Real &getArg5()
  {
    return strength;
  }
  typedef Real type5;
  inline bool &getArg6()
  {
    return isLevelSet;
  }
  typedef bool type6;
  inline bool &getArg7()
  {
    return isMAC;
  }
  typedef bool type7;
  void runMessage(){};
  void run()
  {
    const IndexInt _sz = size;
#pragma omp parallel
    {

#pragma omp for
      for (IndexInt i = 0; i < _sz; i++)
        op(i, flags, dst, old, fwd, bwd, strength, isLevelSet, isMAC);
    }
  }
  const FlagGrid &flags;
  Grid<T> &dst;
  const Grid<T> &old;
  const Grid<T> &fwd;
  const Grid<T> &bwd;
  Real strength;
  bool isLevelSet;
  bool isMAC;
};

//! Kernel: Correct based on forward and backward SL steps (for both centered & mac grids)

template<class T> struct MacCormackCorrectMAC : public KernelBase {
  MacCormackCorrectMAC(const FlagGrid &flags,
                       Grid<T> &dst,
                       const Grid<T> &old,
                       const Grid<T> &fwd,
                       const Grid<T> &bwd,
                       Real strength,
                       bool isLevelSet,
                       bool isMAC = false)
      : KernelBase(&flags, 0),
        flags(flags),
        dst(dst),
        old(old),
        fwd(fwd),
        bwd(bwd),
        strength(strength),
        isLevelSet(isLevelSet),
        isMAC(isMAC)
  {
    runMessage();
    run();
  }
  inline void op(int i,
                 int j,
                 int k,
                 const FlagGrid &flags,
                 Grid<T> &dst,
                 const Grid<T> &old,
                 const Grid<T> &fwd,
                 const Grid<T> &bwd,
                 Real strength,
                 bool isLevelSet,
                 bool isMAC = false)
  {
    bool skip[3] = {false, false, false};

    if (!flags.isFluid(i, j, k))
      skip[0] = skip[1] = skip[2] = true;
    if (isMAC) {
      if ((i > 0) && (!flags.isFluid(i - 1, j, k)))
        skip[0] = true;
      if ((j > 0) && (!flags.isFluid(i, j - 1, k)))
        skip[1] = true;
      if ((k > 0) && (!flags.isFluid(i, j, k - 1)))
        skip[2] = true;
    }

    for (int c = 0; c < 3; ++c) {
      if (skip[c]) {
        dst(i, j, k)[c] = fwd(i, j, k)[c];
      }
      else {
        // perform actual correction with given strength
        dst(i, j, k)[c] = fwd(i, j, k)[c] + strength * 0.5 * (old(i, j, k)[c] - bwd(i, j, k)[c]);
      }
    }
  }
  inline const FlagGrid &getArg0()
  {
    return flags;
  }
  typedef FlagGrid type0;
  inline Grid<T> &getArg1()
  {
    return dst;
  }
  typedef Grid<T> type1;
  inline const Grid<T> &getArg2()
  {
    return old;
  }
  typedef Grid<T> type2;
  inline const Grid<T> &getArg3()
  {
    return fwd;
  }
  typedef Grid<T> type3;
  inline const Grid<T> &getArg4()
  {
    return bwd;
  }
  typedef Grid<T> type4;
  inline Real &getArg5()
  {
    return strength;
  }
  typedef Real type5;
  inline bool &getArg6()
  {
    return isLevelSet;
  }
  typedef bool type6;
  inline bool &getArg7()
  {
    return isMAC;
  }
  typedef bool type7;
  void runMessage(){};
  void run()
  {
    const int _maxX = maxX;
    const int _maxY = maxY;
    if (maxZ > 1) {

#pragma omp parallel
      {

#pragma omp for
        for (int k = minZ; k < maxZ; k++)
          for (int j = 0; j < _maxY; j++)
            for (int i = 0; i < _maxX; i++)
              op(i, j, k, flags, dst, old, fwd, bwd, strength, isLevelSet, isMAC);
      }
    }
    else {
      const int k = 0;
#pragma omp parallel
      {

#pragma omp for
        for (int j = 0; j < _maxY; j++)
          for (int i = 0; i < _maxX; i++)
            op(i, j, k, flags, dst, old, fwd, bwd, strength, isLevelSet, isMAC);
      }
    }
  }
  const FlagGrid &flags;
  Grid<T> &dst;
  const Grid<T> &old;
  const Grid<T> &fwd;
  const Grid<T> &bwd;
  Real strength;
  bool isLevelSet;
  bool isMAC;
};

// Helper to collect min/max in a template
template<class T> inline void getMinMax(T &minv, T &maxv, const T &val)
{
  if (val < minv)
    minv = val;
  if (val > maxv)
    maxv = val;
}
template<> inline void getMinMax<Vec3>(Vec3 &minv, Vec3 &maxv, const Vec3 &val)
{
  getMinMax(minv.x, maxv.x, val.x);
  getMinMax(minv.y, maxv.y, val.y);
  getMinMax(minv.z, maxv.z, val.z);
}

//! detect out of bounds value
template<class T> inline bool cmpMinMax(T &minv, T &maxv, const T &val)
{
  if (val < minv)
    return true;
  if (val > maxv)
    return true;
  return false;
}
template<> inline bool cmpMinMax<Vec3>(Vec3 &minv, Vec3 &maxv, const Vec3 &val)
{
  return (cmpMinMax(minv.x, maxv.x, val.x) | cmpMinMax(minv.y, maxv.y, val.y) |
          cmpMinMax(minv.z, maxv.z, val.z));
}

#define checkFlag(x, y, z) (flags((x), (y), (z)) & (FlagGrid::TypeFluid | FlagGrid::TypeEmpty))

//! Helper function for clamping non-mac grids (those have specialized per component version below)
//  Note - 2 clamp modes, a sharper one (default, clampMode 1, also uses backward step),
//         and a softer version (clampMode 2) that is recommended in Andy's paper
template<class T>
inline T doClampComponent(const Vec3i &gridSize,
                          const FlagGrid &flags,
                          T dst,
                          const Grid<T> &orig,
                          const T fwd,
                          const Vec3 &pos,
                          const Vec3 &vel,
                          const int clampMode)
{
  T minv(std::numeric_limits<Real>::max()), maxv(-std::numeric_limits<Real>::max());
  bool haveFl = false;

  // forward (and optionally) backward
  Vec3i positions[2];
  int numPos = 1;
  positions[0] = toVec3i(pos - vel);
  if (clampMode == 1) {
    numPos = 2;
    positions[1] = toVec3i(pos + vel);
  }

  for (int l = 0; l < numPos; ++l) {
    Vec3i &currPos = positions[l];

    // clamp lookup to grid
    const int i0 = clamp(currPos.x, 0, gridSize.x - 1);  // note! gridsize already has -1 from call
    const int j0 = clamp(currPos.y, 0, gridSize.y - 1);
    const int k0 = clamp(currPos.z, 0, (orig.is3D() ? (gridSize.z - 1) : 1));
    const int i1 = i0 + 1, j1 = j0 + 1, k1 = (orig.is3D() ? (k0 + 1) : k0);

    // find min/max around source pos
    if (checkFlag(i0, j0, k0)) {
      getMinMax(minv, maxv, orig(i0, j0, k0));
      haveFl = true;
    }
    if (checkFlag(i1, j0, k0)) {
      getMinMax(minv, maxv, orig(i1, j0, k0));
      haveFl = true;
    }
    if (checkFlag(i0, j1, k0)) {
      getMinMax(minv, maxv, orig(i0, j1, k0));
      haveFl = true;
    }
    if (checkFlag(i1, j1, k0)) {
      getMinMax(minv, maxv, orig(i1, j1, k0));
      haveFl = true;
    }

    if (orig.is3D()) {
      if (checkFlag(i0, j0, k1)) {
        getMinMax(minv, maxv, orig(i0, j0, k1));
        haveFl = true;
      }
      if (checkFlag(i1, j0, k1)) {
        getMinMax(minv, maxv, orig(i1, j0, k1));
        haveFl = true;
      }
      if (checkFlag(i0, j1, k1)) {
        getMinMax(minv, maxv, orig(i0, j1, k1));
        haveFl = true;
      }
      if (checkFlag(i1, j1, k1)) {
        getMinMax(minv, maxv, orig(i1, j1, k1));
        haveFl = true;
      }
    }
  }

  if (!haveFl)
    return fwd;
  if (clampMode == 1) {
    dst = clamp(dst, minv, maxv);  // hard clamp
  }
  else {
    if (cmpMinMax(minv, maxv, dst))
      dst = fwd;  // recommended in paper, "softer"
  }
  return dst;
}

//! Helper function for clamping MAC grids, slight differences in flag checks
//  similar to scalar version, just uses single component c of vec3 values
//  for symmetry, reverts to first order near boundaries for clampMode 2
template<int c>
inline Real doClampComponentMAC(const FlagGrid &flags,
                                const Vec3i &gridSize,
                                Real dst,
                                const MACGrid &orig,
                                Real fwd,
                                const Vec3 &pos,
                                const Vec3 &vel,
                                const int clampMode)
{
  Real minv = std::numeric_limits<Real>::max(), maxv = -std::numeric_limits<Real>::max();
  // bool haveFl = false;

  // forward (and optionally) backward
  Vec3i positions[2];
  int numPos = 1;
  positions[0] = toVec3i(pos - vel);
  if (clampMode == 1) {
    numPos = 2;
    positions[1] = toVec3i(pos + vel);
  }

  Vec3i oPos = toVec3i(pos);
  Vec3i nbPos = oPos;
  nbPos[c] -= 1;
  if (clampMode == 2 &&
      (!(checkFlag(oPos.x, oPos.y, oPos.z) && checkFlag(nbPos.x, nbPos.y, nbPos.z))))
    return fwd;  // replaces haveFl check

  for (int l = 0; l < numPos; ++l) {
    Vec3i &currPos = positions[l];

    const int i0 = clamp(currPos.x, 0, gridSize.x - 1);  // note! gridsize already has -1 from call
    const int j0 = clamp(
        currPos.y, 0, gridSize.y - 1);  // but we need a clamp to -2 for the +1 offset below
    const int k0 = clamp(currPos.z, 0, (orig.is3D() ? (gridSize.z - 1) : 0));
    const int i1 = i0 + 1, j1 = j0 + 1, k1 = (orig.is3D() ? (k0 + 1) : k0);

    // find min/max around source pos
    getMinMax(minv, maxv, orig(i0, j0, k0)[c]);
    getMinMax(minv, maxv, orig(i1, j0, k0)[c]);
    getMinMax(minv, maxv, orig(i0, j1, k0)[c]);
    getMinMax(minv, maxv, orig(i1, j1, k0)[c]);

    if (orig.is3D()) {
      getMinMax(minv, maxv, orig(i0, j0, k1)[c]);
      getMinMax(minv, maxv, orig(i1, j0, k1)[c]);
      getMinMax(minv, maxv, orig(i0, j1, k1)[c]);
      getMinMax(minv, maxv, orig(i1, j1, k1)[c]);
    }
  }

  if (clampMode == 1) {
    dst = clamp(dst, minv, maxv);  // hard clamp
  }
  else {
    if (cmpMinMax(minv, maxv, dst))
      dst = fwd;  // recommended in paper, "softer"
  }
  return dst;
}

#undef checkFlag

//! Kernel: Clamp obtained value to min/max in source area, and reset values that point out of grid
//! or into boundaries
//          (note - MAC grids are handled below)

template<class T> struct MacCormackClamp : public KernelBase {
  MacCormackClamp(const FlagGrid &flags,
                  const MACGrid &vel,
                  Grid<T> &dst,
                  const Grid<T> &orig,
                  const Grid<T> &fwd,
                  Real dt,
                  const int clampMode)
      : KernelBase(&flags, 1),
        flags(flags),
        vel(vel),
        dst(dst),
        orig(orig),
        fwd(fwd),
        dt(dt),
        clampMode(clampMode)
  {
    runMessage();
    run();
  }
  inline void op(int i,
                 int j,
                 int k,
                 const FlagGrid &flags,
                 const MACGrid &vel,
                 Grid<T> &dst,
                 const Grid<T> &orig,
                 const Grid<T> &fwd,
                 Real dt,
                 const int clampMode)
  {
    T dval = dst(i, j, k);
    Vec3i gridUpper = flags.getSize() - 1;

    dval = doClampComponent<T>(gridUpper,
                               flags,
                               dval,
                               orig,
                               fwd(i, j, k),
                               Vec3(i, j, k),
                               vel.getCentered(i, j, k) * dt,
                               clampMode);

    if (1 && clampMode == 1) {
      // lookup forward/backward , round to closest NB
      Vec3i posFwd = toVec3i(Vec3(i, j, k) + Vec3(0.5, 0.5, 0.5) - vel.getCentered(i, j, k) * dt);
      Vec3i posBwd = toVec3i(Vec3(i, j, k) + Vec3(0.5, 0.5, 0.5) + vel.getCentered(i, j, k) * dt);

      // test if lookups point out of grid or into obstacle (note doClampComponent already checks
      // sides, below is needed for valid flags access)
      if (posFwd.x < 0 || posFwd.y < 0 || posFwd.z < 0 || posBwd.x < 0 || posBwd.y < 0 ||
          posBwd.z < 0 || posFwd.x > gridUpper.x || posFwd.y > gridUpper.y ||
          ((posFwd.z > gridUpper.z) && flags.is3D()) || posBwd.x > gridUpper.x ||
          posBwd.y > gridUpper.y || ((posBwd.z > gridUpper.z) && flags.is3D()) ||
          flags.isObstacle(posFwd) || flags.isObstacle(posBwd)) {
        dval = fwd(i, j, k);
      }
    }
    // clampMode 2 handles flags in doClampComponent call

    dst(i, j, k) = dval;
  }
  inline const FlagGrid &getArg0()
  {
    return flags;
  }
  typedef FlagGrid type0;
  inline const MACGrid &getArg1()
  {
    return vel;
  }
  typedef MACGrid type1;
  inline Grid<T> &getArg2()
  {
    return dst;
  }
  typedef Grid<T> type2;
  inline const Grid<T> &getArg3()
  {
    return orig;
  }
  typedef Grid<T> type3;
  inline const Grid<T> &getArg4()
  {
    return fwd;
  }
  typedef Grid<T> type4;
  inline Real &getArg5()
  {
    return dt;
  }
  typedef Real type5;
  inline const int &getArg6()
  {
    return clampMode;
  }
  typedef int type6;
  void runMessage(){};
  void run()
  {
    const int _maxX = maxX;
    const int _maxY = maxY;
    if (maxZ > 1) {

#pragma omp parallel
      {

#pragma omp for
        for (int k = minZ; k < maxZ; k++)
          for (int j = 1; j < _maxY; j++)
            for (int i = 1; i < _maxX; i++)
              op(i, j, k, flags, vel, dst, orig, fwd, dt, clampMode);
      }
    }
    else {
      const int k = 0;
#pragma omp parallel
      {

#pragma omp for
        for (int j = 1; j < _maxY; j++)
          for (int i = 1; i < _maxX; i++)
            op(i, j, k, flags, vel, dst, orig, fwd, dt, clampMode);
      }
    }
  }
  const FlagGrid &flags;
  const MACGrid &vel;
  Grid<T> &dst;
  const Grid<T> &orig;
  const Grid<T> &fwd;
  Real dt;
  const int clampMode;
};

//! Kernel: same as MacCormackClamp above, but specialized version for MAC grids

struct MacCormackClampMAC : public KernelBase {
  MacCormackClampMAC(const FlagGrid &flags,
                     const MACGrid &vel,
                     MACGrid &dst,
                     const MACGrid &orig,
                     const MACGrid &fwd,
                     Real dt,
                     const int clampMode)
      : KernelBase(&flags, 1),
        flags(flags),
        vel(vel),
        dst(dst),
        orig(orig),
        fwd(fwd),
        dt(dt),
        clampMode(clampMode)
  {
    runMessage();
    run();
  }
  inline void op(int i,
                 int j,
                 int k,
                 const FlagGrid &flags,
                 const MACGrid &vel,
                 MACGrid &dst,
                 const MACGrid &orig,
                 const MACGrid &fwd,
                 Real dt,
                 const int clampMode)
  {
    Vec3 pos(i, j, k);
    Vec3 dval = dst(i, j, k);
    Vec3 dfwd = fwd(i, j, k);
    Vec3i gridUpper = flags.getSize() - 1;

    dval.x = doClampComponentMAC<0>(
        flags, gridUpper, dval.x, orig, dfwd.x, pos, vel.getAtMACX(i, j, k) * dt, clampMode);
    dval.y = doClampComponentMAC<1>(
        flags, gridUpper, dval.y, orig, dfwd.y, pos, vel.getAtMACY(i, j, k) * dt, clampMode);
    if (flags.is3D())
      dval.z = doClampComponentMAC<2>(
          flags, gridUpper, dval.z, orig, dfwd.z, pos, vel.getAtMACZ(i, j, k) * dt, clampMode);

    // note - the MAC version currently does not check whether source points were inside an
    // obstacle! (unlike centered version) this would need to be done for each face separately to
    // stay symmetric...

    dst(i, j, k) = dval;
  }
  inline const FlagGrid &getArg0()
  {
    return flags;
  }
  typedef FlagGrid type0;
  inline const MACGrid &getArg1()
  {
    return vel;
  }
  typedef MACGrid type1;
  inline MACGrid &getArg2()
  {
    return dst;
  }
  typedef MACGrid type2;
  inline const MACGrid &getArg3()
  {
    return orig;
  }
  typedef MACGrid type3;
  inline const MACGrid &getArg4()
  {
    return fwd;
  }
  typedef MACGrid type4;
  inline Real &getArg5()
  {
    return dt;
  }
  typedef Real type5;
  inline const int &getArg6()
  {
    return clampMode;
  }
  typedef int type6;
  void runMessage(){};
  void run()
  {
    const int _maxX = maxX;
    const int _maxY = maxY;
    if (maxZ > 1) {

#pragma omp parallel
      {

#pragma omp for
        for (int k = minZ; k < maxZ; k++)
          for (int j = 1; j < _maxY; j++)
            for (int i = 1; i < _maxX; i++)
              op(i, j, k, flags, vel, dst, orig, fwd, dt, clampMode);
      }
    }
    else {
      const int k = 0;
#pragma omp parallel
      {

#pragma omp for
        for (int j = 1; j < _maxY; j++)
          for (int i = 1; i < _maxX; i++)
            op(i, j, k, flags, vel, dst, orig, fwd, dt, clampMode);
      }
    }
  }
  const FlagGrid &flags;
  const MACGrid &vel;
  MACGrid &dst;
  const MACGrid &orig;
  const MACGrid &fwd;
  Real dt;
  const int clampMode;
};

//! template function for performing SL advection
//! (Note boundary width only needed for specialization for MAC grids below)
template<class GridType>
void fnAdvectSemiLagrange(FluidSolver *parent,
                          const FlagGrid &flags,
                          const MACGrid &vel,
                          GridType &orig,
                          int order,
                          Real strength,
                          int orderSpace,
                          int clampMode,
                          int orderTrace)
{
  typedef typename GridType::BASETYPE T;

  Real dt = parent->getDt();
  bool levelset = orig.getType() & GridBase::TypeLevelset;

  // forward step
  GridType *fwd = new GridType(parent, true, false, false);
  SemiLagrange<T>(flags, vel, *fwd, orig, dt, levelset, orderSpace, orderTrace);

  if (order == 1) {
#if OPENMP && OPENMP_OFFLOAD
    orig.copyFrom(*fwd, true, false);
#else
    orig.swap(*fwd);
#endif
  }
  else if (order == 2) {  // MacCormack
    GridType bwd(parent);
    GridType *newGrid = new GridType(parent, true, false, false);

    // bwd <- backwards step
    SemiLagrange<T>(flags, vel, bwd, *fwd, -dt, levelset, orderSpace, orderTrace);

    // newGrid <- compute correction
    MacCormackCorrect<T>(flags, *newGrid, orig, *fwd, bwd, strength, levelset);

    // clamp values
    MacCormackClamp<T>(flags, vel, *newGrid, orig, *fwd, dt, clampMode);

#if OPENMP && OPENMP_OFFLOAD
    orig.copyFrom(*newGrid, true, false);
#else
    orig.swap(*newGrid);
#endif
    if (newGrid)
      delete newGrid;
  }
  if (fwd)
    delete fwd;
}

// outflow functions

//! calculate local propagation velocity for cell (i,j,k)
Vec3 getBulkVel(const FlagGrid &flags, const MACGrid &vel, int i, int j, int k)
{
  Vec3 avg = Vec3(0.);
  int count = 0;
  int size = 1;  // stencil size
  int nmax = (flags.is3D() ? size : 0);
  // average the neighboring fluid / outflow cell's velocity
  for (int n = -nmax; n <= nmax; n++) {
    for (int m = -size; m <= size; m++) {
      for (int l = -size; l <= size; l++) {
        if (flags.isInBounds(Vec3i(i + l, j + m, k + n)) &&
            (flags.isFluid(i + l, j + m, k + n) || flags.isOutflow(i + l, j + m, k + n))) {
          avg += vel(i + l, j + m, k + n);
          count++;
        }
      }
    }
  }
  return count > 0 ? avg / count : avg;
}

//! extrapolate normal velocity components into outflow cell
struct extrapolateVelConvectiveBC : public KernelBase {
  extrapolateVelConvectiveBC(const FlagGrid &flags,
                             const MACGrid &vel,
                             MACGrid &velDst,
                             const MACGrid &velPrev,
                             Real timeStep)
      : KernelBase(&flags, 0),
        flags(flags),
        vel(vel),
        velDst(velDst),
        velPrev(velPrev),
        timeStep(timeStep)
  {
    runMessage();
    run();
  }
  inline void op(int i,
                 int j,
                 int k,
                 const FlagGrid &flags,
                 const MACGrid &vel,
                 MACGrid &velDst,
                 const MACGrid &velPrev,
                 Real timeStep)
  {
    if (flags.isOutflow(i, j, k)) {
      const Vec3 bulkVel = getBulkVel(flags, vel, i, j, k);
      const int dim = flags.is3D() ? 3 : 2;
      const Vec3i cur = Vec3i(i, j, k);
      Vec3i low, up, flLow, flUp;
      int cnt = 0;
      // iterate over each velocity component x, y, z
      for (int c = 0; c < dim; c++) {
        low = up = flLow = flUp = cur;
        Real factor = timeStep *
                      max((Real)1.0, abs(bulkVel[c]));  // prevent the extrapolated velocity from
                                                        // exploding when bulk velocity below 1
        low[c] = flLow[c] = cur[c] - 1;
        up[c] = flUp[c] = cur[c] + 1;
        // iterate over bWidth to allow for extrapolation into more distant outflow cells;
        // hard-coded extrapolation distance of two cells
        for (int d = 0; d < 2; d++) {
          bool extrapolateFromLower = flags.isInBounds(flLow) && flags.isFluid(flLow);
          bool extrapolateFromUpper = flags.isInBounds(flUp) && flags.isFluid(flUp);
          if (extrapolateFromLower || extrapolateFromUpper) {
            if (extrapolateFromLower) {
              velDst(i, j, k) += ((vel(i, j, k) - velPrev(i, j, k)) / factor) + vel(low);
              cnt++;
            }
            if (extrapolateFromUpper) {
              // check for cells equally far away from two fluid cells -> average value between
              // both sides
              velDst(i, j, k) += ((vel(i, j, k) - velPrev(i, j, k)) / factor) + vel(up);
              cnt++;
            }
            break;
          }
          flLow[c]--;
          flUp[c]++;
        }
      }
      if (cnt > 0)
        velDst(i, j, k) /= cnt;
    }
  }
  inline const FlagGrid &getArg0()
  {
    return flags;
  }
  typedef FlagGrid type0;
  inline const MACGrid &getArg1()
  {
    return vel;
  }
  typedef MACGrid type1;
  inline MACGrid &getArg2()
  {
    return velDst;
  }
  typedef MACGrid type2;
  inline const MACGrid &getArg3()
  {
    return velPrev;
  }
  typedef MACGrid type3;
  inline Real &getArg4()
  {
    return timeStep;
  }
  typedef Real type4;
  void runMessage(){};
  void run()
  {
    const int _maxX = maxX;
    const int _maxY = maxY;
    if (maxZ > 1) {

#pragma omp parallel
      {

#pragma omp for
        for (int k = minZ; k < maxZ; k++)
          for (int j = 0; j < _maxY; j++)
            for (int i = 0; i < _maxX; i++)
              op(i, j, k, flags, vel, velDst, velPrev, timeStep);
      }
    }
    else {
      const int k = 0;
#pragma omp parallel
      {

#pragma omp for
        for (int j = 0; j < _maxY; j++)
          for (int i = 0; i < _maxX; i++)
            op(i, j, k, flags, vel, velDst, velPrev, timeStep);
      }
    }
  }
  const FlagGrid &flags;
  const MACGrid &vel;
  MACGrid &velDst;
  const MACGrid &velPrev;
  Real timeStep;
};

//! copy extrapolated velocity components
struct copyChangedVels : public KernelBase {
  copyChangedVels(const FlagGrid &flags, const MACGrid &velDst, MACGrid &vel)
      : KernelBase(&flags, 0), flags(flags), velDst(velDst), vel(vel)
  {
    runMessage();
    run();
  }
  inline void op(int i, int j, int k, const FlagGrid &flags, const MACGrid &velDst, MACGrid &vel)
  {
    if (flags.isOutflow(i, j, k))
      vel(i, j, k) = velDst(i, j, k);
  }
  inline const FlagGrid &getArg0()
  {
    return flags;
  }
  typedef FlagGrid type0;
  inline const MACGrid &getArg1()
  {
    return velDst;
  }
  typedef MACGrid type1;
  inline MACGrid &getArg2()
  {
    return vel;
  }
  typedef MACGrid type2;
  void runMessage(){};
  void run()
  {
    const int _maxX = maxX;
    const int _maxY = maxY;
    if (maxZ > 1) {

#pragma omp parallel
      {

#pragma omp for
        for (int k = minZ; k < maxZ; k++)
          for (int j = 0; j < _maxY; j++)
            for (int i = 0; i < _maxX; i++)
              op(i, j, k, flags, velDst, vel);
      }
    }
    else {
      const int k = 0;
#pragma omp parallel
      {

#pragma omp for
        for (int j = 0; j < _maxY; j++)
          for (int i = 0; i < _maxX; i++)
            op(i, j, k, flags, velDst, vel);
      }
    }
  }
  const FlagGrid &flags;
  const MACGrid &velDst;
  MACGrid &vel;
};

//! extrapolate normal velocity components into open boundary cells (marked as outflow cells)
void applyOutflowBC(const FlagGrid &flags, MACGrid &vel, const MACGrid &velPrev, double timeStep)
{
  MACGrid velDst(vel.getParent());  // do not overwrite vel while it is read
  extrapolateVelConvectiveBC(flags, vel, velDst, velPrev, max(1.0, timeStep * 4));
  copyChangedVels(flags, velDst, vel);
}

// advection helpers

//! prevent parts of the surface getting "stuck" in obstacle regions
struct knResetPhiInObs : public KernelBase {
  knResetPhiInObs(const FlagGrid &flags, Grid<Real> &sdf)
      : KernelBase(&flags, 0), flags(flags), sdf(sdf)
  {
    runMessage();
    run();
  }
  inline void op(int i, int j, int k, const FlagGrid &flags, Grid<Real> &sdf)
  {
    if (flags.isObstacle(i, j, k) && (sdf(i, j, k) < 0.)) {
      sdf(i, j, k) = 0.1;
    }
  }
  inline const FlagGrid &getArg0()
  {
    return flags;
  }
  typedef FlagGrid type0;
  inline Grid<Real> &getArg1()
  {
    return sdf;
  }
  typedef Grid<Real> type1;
  void runMessage(){};
  void run()
  {
    const int _maxX = maxX;
    const int _maxY = maxY;
    if (maxZ > 1) {

#pragma omp parallel
      {

#pragma omp for
        for (int k = minZ; k < maxZ; k++)
          for (int j = 0; j < _maxY; j++)
            for (int i = 0; i < _maxX; i++)
              op(i, j, k, flags, sdf);
      }
    }
    else {
      const int k = 0;
#pragma omp parallel
      {

#pragma omp for
        for (int j = 0; j < _maxY; j++)
          for (int i = 0; i < _maxX; i++)
            op(i, j, k, flags, sdf);
      }
    }
  }
  const FlagGrid &flags;
  Grid<Real> &sdf;
};
void resetPhiInObs(const FlagGrid &flags, Grid<Real> &sdf)
{
  knResetPhiInObs(flags, sdf);
}
static PyObject *_W_0(PyObject *_self, PyObject *_linargs, PyObject *_kwds)
{
  try {
    PbArgs _args(_linargs, _kwds);
    FluidSolver *parent = _args.obtainParent();
    bool noTiming = _args.getOpt<bool>("notiming", -1, 0);
    pbPreparePlugin(parent, "resetPhiInObs", !noTiming);
    PyObject *_retval = nullptr;
    {
      ArgLocker _lock;
      const FlagGrid &flags = *_args.getPtr<FlagGrid>("flags", 0, &_lock);
      Grid<Real> &sdf = *_args.getPtr<Grid<Real>>("sdf", 1, &_lock);
      _retval = getPyNone();
      resetPhiInObs(flags, sdf);
      _args.check();
    }
    pbFinalizePlugin(parent, "resetPhiInObs", !noTiming);
    return _retval;
  }
  catch (std::exception &e) {
    pbSetError("resetPhiInObs", e.what());
    return 0;
  }
}
static const Pb::Register _RP_resetPhiInObs("", "resetPhiInObs", _W_0);
extern "C" {
void PbRegister_resetPhiInObs()
{
  KEEP_UNUSED(_RP_resetPhiInObs);
}
}

// advection main calls

//! template function for performing SL advection: specialized version for MAC grids
template<>
void fnAdvectSemiLagrange<MACGrid>(FluidSolver *parent,
                                   const FlagGrid &flags,
                                   const MACGrid &vel,
                                   MACGrid &orig,
                                   int order,
                                   Real strength,
                                   int orderSpace,
                                   int clampMode,
                                   int orderTrace)
{
  Real dt = parent->getDt();

  // forward step
  MACGrid *fwd = new MACGrid(parent, true, false, false);
  SemiLagrangeMAC(flags, vel, *fwd, orig, dt, orderSpace, orderTrace);

  if (orderSpace != 1) {
    debMsg("Warning higher order for MAC grids not yet implemented...", 1);
  }

  if (order == 1) {
    applyOutflowBC(flags, *fwd, orig, dt);
#if OPENMP && OPENMP_OFFLOAD
    orig.copyFrom(*fwd, true, false);
#else
    orig.swap(*fwd);
#endif
  }
  else if (order == 2) {  // MacCormack
    MACGrid bwd(parent);
    MACGrid *newGrid = new MACGrid(parent, true, false, false);

    // bwd <- backwards step
    SemiLagrangeMAC(flags, vel, bwd, *fwd, -dt, orderSpace, orderTrace);

    // newGrid <- compute correction
    MacCormackCorrectMAC<Vec3>(flags, *newGrid, orig, *fwd, bwd, strength, false, true);

    // clamp values
    MacCormackClampMAC(flags, vel, *newGrid, orig, *fwd, dt, clampMode);

    applyOutflowBC(flags, *newGrid, orig, dt);
#if OPENMP && OPENMP_OFFLOAD
    orig.copyFrom(*newGrid, true, false);
#else
    orig.swap(*newGrid);
#endif
    if (newGrid)
      delete newGrid;
  }
  if (fwd)
    delete fwd;
}

//! Perform semi-lagrangian advection of target Real- or Vec3 grid
//! Open boundary handling needs information about width of border
//! Clamping modes: 1 regular clamp leading to more overshoot and sharper results, 2 revert to 1st
//! order slightly smoother less overshoot (enable when 1 gives artifacts)

void advectSemiLagrange(const FlagGrid *flags,
                        const MACGrid *vel,
                        GridBase *grid,
                        int order = 1,
                        Real strength = 1.0,
                        int orderSpace = 1,
                        bool openBounds = false,
                        int boundaryWidth = -1,
                        int clampMode = 2,
                        int orderTrace = 1)
{
  assertMsg(order == 1 || order == 2,
            "AdvectSemiLagrange: Only order 1 (regular SL) and 2 (MacCormack) supported");
  if ((boundaryWidth != -1) || (openBounds)) {
    debMsg(
        "Warning: boundaryWidth and openBounds parameters in AdvectSemiLagrange plugin are "
        "deprecated (and have no more effect), please remove.",
        0);
  }

  // determine type of grid
  if (grid->getType() & GridBase::TypeReal) {
    fnAdvectSemiLagrange<Grid<Real>>(flags->getParent(),
                                     *flags,
                                     *vel,
                                     *((Grid<Real> *)grid),
                                     order,
                                     strength,
                                     orderSpace,
                                     clampMode,
                                     orderTrace);
  }
  else if (grid->getType() & GridBase::TypeMAC) {
    fnAdvectSemiLagrange<MACGrid>(flags->getParent(),
                                  *flags,
                                  *vel,
                                  *((MACGrid *)grid),
                                  order,
                                  strength,
                                  orderSpace,
                                  clampMode,
                                  orderTrace);
  }
  else if (grid->getType() & GridBase::TypeVec3) {
    fnAdvectSemiLagrange<Grid<Vec3>>(flags->getParent(),
                                     *flags,
                                     *vel,
                                     *((Grid<Vec3> *)grid),
                                     order,
                                     strength,
                                     orderSpace,
                                     clampMode,
                                     orderTrace);
  }
  else
    errMsg("AdvectSemiLagrange: Grid Type is not supported (only Real, Vec3, MAC, Levelset)");
}
static PyObject *_W_1(PyObject *_self, PyObject *_linargs, PyObject *_kwds)
{
  try {
    PbArgs _args(_linargs, _kwds);
    FluidSolver *parent = _args.obtainParent();
    bool noTiming = _args.getOpt<bool>("notiming", -1, 0);
    pbPreparePlugin(parent, "advectSemiLagrange", !noTiming);
    PyObject *_retval = nullptr;
    {
      ArgLocker _lock;
      const FlagGrid *flags = _args.getPtr<FlagGrid>("flags", 0, &_lock);
      const MACGrid *vel = _args.getPtr<MACGrid>("vel", 1, &_lock);
      GridBase *grid = _args.getPtr<GridBase>("grid", 2, &_lock);
      int order = _args.getOpt<int>("order", 3, 1, &_lock);
      Real strength = _args.getOpt<Real>("strength", 4, 1.0, &_lock);
      int orderSpace = _args.getOpt<int>("orderSpace", 5, 1, &_lock);
      bool openBounds = _args.getOpt<bool>("openBounds", 6, false, &_lock);
      int boundaryWidth = _args.getOpt<int>("boundaryWidth", 7, -1, &_lock);
      int clampMode = _args.getOpt<int>("clampMode", 8, 2, &_lock);
      int orderTrace = _args.getOpt<int>("orderTrace", 9, 1, &_lock);
      _retval = getPyNone();
      advectSemiLagrange(flags,
                         vel,
                         grid,
                         order,
                         strength,
                         orderSpace,
                         openBounds,
                         boundaryWidth,
                         clampMode,
                         orderTrace);
      _args.check();
    }
    pbFinalizePlugin(parent, "advectSemiLagrange", !noTiming);
    return _retval;
  }
  catch (std::exception &e) {
    pbSetError("advectSemiLagrange", e.what());
    return 0;
  }
}
static const Pb::Register _RP_advectSemiLagrange("", "advectSemiLagrange", _W_1);
extern "C" {
void PbRegister_advectSemiLagrange()
{
  KEEP_UNUSED(_RP_advectSemiLagrange);
}
}

}  // namespace Manta