Welcome to mirror list, hosted at ThFree Co, Russian Federation.

BuildLDLT « fbuild « ode « dist « ode « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: fd74faf18df8b9e7ffc0f01a7ebf46268b6dd3cc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
#!/usr/bin/perl
#
#########################################################################
#                                                                       #
# Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith.       #
# All rights reserved.  Email: russ@q12.org   Web: www.q12.org          #
#                                                                       #
# This library is free software; you can redistribute it and/or         #
# modify it under the terms of EITHER:                                  #
#   (1) The GNU Lesser General Public License as published by the Free  #
#       Software Foundation; either version 2.1 of the License, or (at  #
#       your option) any later version. The text of the GNU Lesser      #
#       General Public License is included with this library in the     #
#       file LICENSE.TXT.                                               #
#   (2) The BSD-style license that is included with this library in     #
#       the file LICENSE-BSD.TXT.                                       #
#                                                                       #
# This library is distributed in the hope that it will be useful,       #
# but WITHOUT ANY WARRANTY; without even the implied warranty of        #
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files    #
# LICENSE.TXT and LICENSE-BSD.TXT for more details.                     #
#                                                                       #
#########################################################################

#
# triangular matrix solver and factorizer code generator.
#
# SOLVER
# ------
#
# if L is an n x n lower triangular matrix (with ones on the diagonal), the
# solver solves L*X=B where X and B are n x m matrices. this is the core
# step in L*D*L' factorization. the algorithm is (in matlab):
#
#     for i=1:n
#       for j=1:m
#         X(i,j) = B(i,j) - L(i,1:i-1)*X(1:i-1,j);
#       end
#     end
#
# note that the ordering of the (i,j) loop is somewhat arbitrary. the only
# prerequisite to calculating element (i,j) of X is that all X(1:i-1,j) have
# have already been calcuated. this gives us some flexibility.
#
# the code generated below calculates X in N1 x N1 blocks. to speed up the
# innermost dot product loop, the outer product trick is used. for instance,
# to calculate the value of the 2x2 matrix ABCD below we first iterate over
# the vectors (a,b,c,d) and (e,f,g,h), computing ABCD = a*e+b*f+c*g+d*h.
# then A and B contain the dot product values needed in the algorithm, and
# C and D have almost all of it. the outer product trick reduces the number
# of memory loads required. in this example 16 loads are required, but if
# the simple dot product in the above algorithm is used then 32 loads are
# required. increasing N1 decreases the total number of loads, but only as long
# as we have enough temporary registers to keep the matrix blocks and vectors.
#
#                L                     *    X     =     B
#
#  [ .                               ]   [ e e ]     [ . . ]
#  [ . .                             ]   [ f f ]     [ . . ]
#  [ . . .                           ]   [ g g ]     [ . . ]
#  [ . . . .                         ]   [ h h ]     [ . . ]
#  [ a b c d .                       ]   [ A B ]  =  [ . . ]
#  [ a b c d . .                     ]   [ C D ]     [ . . ]
#  [ . . . . . . .                   ]   [ . . ]     [ . . ]
#  [ . . . . . . . .                 ]   [ . . ]     [ . . ]
#  [ . . . . . . . . .               ]   [ . . ]     [ . . ]
#
# note that L is stored by rows but X and B are stored by columns.
# the outer product loops are unrolled for extra speed.
#
# LDLT FACTORIZATION
# ------------------
#
# the factorization algorithm builds L incrementally by repeatedly solving
# the following equation:
#
#   [ L  0 ] [ D 0 ] [ L' l  ] = [ A  a ]    <-- n rows
#   [ l' e ] [ 0 d ] [ 0  e' ]   [ a' b ]    <-- m rows
#
#   [ L*D*L'   L*D*l         ] = [ A  a ]
#   [ l'*D*L'  l'*D*l+e*d*e' ]   [ a' b ]
#
# L*D*L'=A is an existing solution, and a,b are new rows/columns to add to A.
# we compute:
#
#   L * (Dl) = a
#   l = inv(D) * Dl
#   e*d*e' = b - l'*Dl       (m*m LDLT factorization)
#
#
# L-transpose solver
# ------------------
#
# the LT (L-transpose) solver uses the same logic as the standard L-solver,
# with a few tricks to make it work. to solve L^T*X=B we first remap:
#    L to Lhat : Lhat(i,j) = L(n-j,n-i)
#    X to Xhat : Xhat(i) = X(n-i)
#    B to Bhat : Bhat(i) = B(n-i)
# and then solve Lhat*Xhat = Bhat. the current LT solver only supports one
# right hand side, but that's okay as it is not used in the factorizer.
#
#############################################################################
#
# code generation parameters, set in a parameters file:
#    FNAME   : name of source file to generate - a .c file will be made
#    TYPE    : 'f' to build factorizer, 's' to build solver, 't' to build the
#              transpose solver.
#    N1      : block size (size of outer product matrix) (1..9)
#    UNROLL1 : solver inner loop unrolling factor (1..)
#    UNROLL2 : factorizer inner loop unrolling factor (1..)
#    MADD    : if nonzero, generate code for fused multiply-add (0,1)
#    FETCH   : how to fetch data in the inner loop:
#                0 - load in a batch (the `normal way')
#                1 - delay inner loop loads until just before they're needed
#
#############################################################################
#
# TODO
# ----
#
# * dFactorLDLT() is not so efficient for matrix sizes < block size, e.g.
#   redundant calls, zero loads, adds etc
#
#############################################################################
#
# NOTES:
#
# * on the pentium we can prefetch like this:
#     asm ("prefetcht0 %0" : : "m" (*Ai) );
#   but it doesn't seem to help much

require ("BuildUtil");

# get and check code generation parameters
error ("Usage: BuildLDLT <parameters-file>") if $#ARGV != 0;
do $ARGV[0];

if (!defined($FNAME) || !defined($TYPE) || !defined($N1) ||
    !defined($UNROLL1) || !defined($UNROLL2) || !defined($MADD) ||
    !defined($FETCH)) {
  error ("code generation parameters not defined");
}

# check parameters
error ("bad TYPE") if $TYPE ne 'f' && $TYPE ne 's' && $TYPE ne 't';
error ("bad N1") if $N1 < 1 || $N1 > 9;
error ("bad UNROLL1") if $UNROLL1 < 1;
error ("bad UNROLL2") if $UNROLL2 < 1;
error ("bad MADD") if $MADD != 0 && $MADD != 1;
error ("bad FETCH") if $FETCH < 0 && $FETCH > 1;

#############################################################################
# utility

# functions to handle delayed loading of p and q values.
# bit in the the `ploaded' and `qloaded' numbers record what has been loaded,
# so we dont load it again.

sub newLoads
{
  # bits in these numbers say what registers p and q have been loaded so far
  $ploaded = 0;
  $qloaded = 0;
}

sub loadedEverything
{
  $ploaded = 0xffffffff;
  $qloaded = 0xffffffff;
}

sub loadP # (i,loadcmd)
{
  my $i = $_[0];
  my $loadcmd = $_[1];
  return if ($ploaded & (1 << $i));
  output ($loadcmd);
  $ploaded |= (1 << $i);
}

sub loadQ # (i,loadcmd)
{
  my $i = $_[0];
  my $loadcmd = $_[1];
  return if ($qloaded & (1 << $i));
  output ($loadcmd);
  $qloaded |= (1 << $i);
}

#############################################################################
# make a fast L solve function.
# this function has a restriction that the leading dimension of X and B must
# be a multiple of the block size.

sub innerOuterProductLoop # (M,k,nrhs,increment)
{
  my $M=$_[0];
  my $k=$_[1];
  my $nrhs=$_[2];
  my $increment=$_[3];
  my ($i,$j);
  newLoads;
  if ($FETCH==0) {
    comment ("load p and q values");
    for ($i=1; $i<=$M; $i++) {
      if ($TYPE eq 't') {
        output ("p$i=ell[".ofs2(-($i-1),0,'lskip')."];\n");
        output ("q$i=ex[".ofs2(-($k),$i-1,'lskip')."];\n") if $i <= $nrhs;
      }
      else {
        output ("p$i=ell[".ofs2($k,$i-1,'lskip')."];\n");
        output ("q$i=ex[".ofs2($k,$i-1,'lskip')."];\n") if $i <= $nrhs;
      }
    }
    loadedEverything;
  }

  comment ("compute outer product and add it to the Z matrix");
  for ($i=1; $i<=$M; $i++) {
    for ($j=1; $j<=$nrhs; $j++) {
      if ($TYPE eq 't') {
        loadP ($i,"p$i=ell[".ofs2(-($i-1),0,'lskip')."];\n");
        loadQ ($j,"q$j=ex[".ofs2(-($k),$j-1,'lskip')."];\n");
      }
      else {
        loadP ($i,"p$i=ell[".ofs2($k,$i-1,'lskip')."];\n");
        loadQ ($j,"q$j=ex[".ofs2($k,$j-1,'lskip')."];\n");
      }
      my $var = $MADD ? "Z$i$j +=" : "m$i$j =";
      output ("$var p$i * q$j;\n");
    }
  }

  if ($TYPE eq 't') {
    if ($increment > 0) {
      output ("ell += lskip1;\n");
      output ("ex -= $increment;\n");
    }
    else {
      output ("ell += lskip1;\n");
    }
  }
  else {
    if ($increment > 0) {
      comment ("advance pointers");
      output ("ell += $increment;\n");
      output ("ex += $increment;\n");
    }
  }

  if ($MADD==0) {
    for ($i=1; $i<=$M; $i++) {
      for ($j=1; $j<=$nrhs; $j++) {
        output ("Z$i$j += m$i$j;\n");
      }
    }
  }
}


sub computeRows # (nrhs,rows)
{
  my $nrhs = $_[0];
  my $rows = $_[1];
  my ($i,$j,$k);

  comment ("compute all $rows x $nrhs block of X, from rows i..i+$rows-1");

  comment ("set the Z matrix to 0");
  for ($i=1; $i<=$rows; $i++) {
    for ($j=1; $j<=$nrhs; $j++) {
      output ("Z$i$j=0;\n");
    }
  }
  if ($TYPE eq 't') {
    output ("ell = L - i;\n");
  }
  else {
    output ("ell = L + i*lskip1;\n");
  }
  output ("ex = B;\n");

  comment ("the inner loop that computes outer products and adds them to Z");
  output ("for (j=i-$UNROLL1; j >= 0; j -= $UNROLL1) {\n");
  for ($k=0; $k < $UNROLL1; $k++) {
    innerOuterProductLoop ($rows,$k,$nrhs,($k==$UNROLL1-1) ? $UNROLL1 : 0);
  }

  comment ("end of inner loop");
  output ("}\n");

  if ($UNROLL1 > 1) {
    comment ("compute left-over iterations");
    output ("j += $UNROLL1;\n");
    output ("for (; j > 0; j--) {\n");
    innerOuterProductLoop ($rows,'0',$nrhs,1);
    output ("}\n");
  }

  comment ("finish computing the X(i) block");

  for ($j=1; $j<=$nrhs; $j++) {
    if ($TYPE eq 't') {
      output ("Z1$j = ex[".ofs1(-($j-1),'lskip')."] - Z1$j;\n");
      output ("ex[".ofs1(-($j-1),'lskip')."] = Z1$j;\n");
    }
    else {
      output ("Z1$j = ex[".ofs1($j-1,'lskip')."] - Z1$j;\n");
      output ("ex[".ofs1($j-1,'lskip')."] = Z1$j;\n");
    }
  }

  for ($i=2; $i<=$rows; $i++) {
    for ($j=1; $j<$i; $j++) {
      if ($TYPE eq 't') {
        output ("p$j = ell[".ofs2(-($i-1),$j-1,'lskip')."];\n");
      }
      else {
        output ("p$j = ell[".ofs2($j-1,$i-1,'lskip')."];\n");
      }
    }
    for ($j=1; $j<=$nrhs; $j++) {
      if ($TYPE eq 't') {
        output ("Z$i$j = ex[".ofs2(-($i-1),$j-1,'lskip')."] - Z$i$j");
      }
      else {
        output ("Z$i$j = ex[".ofs2($i-1,$j-1,'lskip')."] - Z$i$j");
      }
      for ($k=1; $k < $i; $k++) {
        output (" - p$k*Z$k$j");
      }
      output (";\n");
      if ($TYPE eq 't') {
        output ("ex[".ofs2(-($i-1),$j-1,'lskip')."] = Z$i$j;\n");
      }
      else {
        output ("ex[".ofs2($i-1,$j-1,'lskip')."] = Z$i$j;\n");
      }
    }
  }
}


sub makeFastL1Solve # ( number-of-right-hand-sides )
{
  my $nrhs = $_[0];
  my ($i,$j,$k);
  my $funcsuffix = ($TYPE eq 'f') ? "_$nrhs" : '';
  my $staticvoid = ($TYPE eq 'f') ? 'static void' : 'void';

  # function header
  if ($TYPE eq 't') {
    output (<<END);

/* solve L^T * x=b, with b containing 1 right hand side.
 * L is an n*n lower triangular matrix with ones on the diagonal.
 * L is stored by rows and its leading dimension is lskip.
 * b is an n*1 matrix that contains the right hand side.
 * b is overwritten with x.
 * this processes blocks of $N1.
 */

void dSolveL1T (const dReal *L, dReal *B, int n, int lskip1)
{
END
  }
  else {
    output (<<END);

/* solve L*X=B, with B containing $nrhs right hand sides.
 * L is an n*n lower triangular matrix with ones on the diagonal.
 * L is stored by rows and its leading dimension is lskip.
 * B is an n*$nrhs matrix that contains the right hand sides.
 * B is stored by columns and its leading dimension is also lskip.
 * B is overwritten with X.
 * this processes blocks of $N1*$N1.
 * if this is in the factorizer source file, n must be a multiple of $N1.
 */

$staticvoid dSolveL1$funcsuffix (const dReal *L, dReal *B, int n, int lskip1)
{
END
  }

  comment ("declare variables - Z matrix, p and q vectors, etc");
  output ("dReal ");
  for ($i=1; $i<=$N1; $i++) {
    for ($j=1; $j<=$nrhs; $j++) {
      output ("Z$i$j,");		# Z matrix
      output ("m$i$j,") if ! $MADD;	# temporary vars where multiplies put
    }
  }
  for ($i=1; $i<=$N1; $i++) {
    output ("p$i,");
    output ("q$i,") if $i <= $nrhs;
  }
  output ("*ex;\nconst dReal *ell;\n");
  output ("int ");
  for ($i=2; $i<$N1; $i++) {
    output ("lskip$i,");
  }
  output ("i,j;\n");

  if ($TYPE eq 't') {
    comment ("special handling for L and B because we're solving L1 *transpose*");
    output ("L = L + (n-1)*(lskip1+1);\n");
    output ("B = B + n-1;\n");
    output ("lskip1 = -lskip1;\n");
  }

  if ($N1 > 2) {
    comment ("compute lskip values");
    for ($i=2; $i<$N1; $i++) {
      output ("lskip$i = $i*lskip1;\n");
    }
  }

  comment ("compute all $N1 x $nrhs blocks of X");
  if ($TYPE eq 's' or $TYPE eq 't') {
    output ("for (i=0; i <= n-$N1; i+=$N1) {\n");
  }
  else {
    output ("for (i=0; i < n; i+=$N1) {\n");
  }
  computeRows ($nrhs,$N1);
  comment ("end of outer loop");
  output ("}\n");

  if ($TYPE eq 's' or $TYPE eq 't') {
    comment ("compute rows at end that are not a multiple of block size");
    output ("for (; i < n; i++) {\n");
    computeRows ($nrhs,1);
    output ("}\n");
  }

  output ("}\n");
}

#############################################################################
# make a fast L*D*L' factorizer

# code fragment: this factors an M x M block. if A_or_Z is 0 then it works
# on the $A matrix otherwise it works on the Z matrix. in either case it
# writes the diagonal entries into the `dee' vector.
# it is a simple implementation of the LDLT algorithm, with no tricks.

sub getA # (i,j,A,A_or_Z)
{
  my $i = $_[0];
  my $j = $_[1];
  my $A = $_[2];
  return $_[3] ? ('Z'.($i+1).($j+1)) : ($A.'['.ofs2($j,$i,'nskip').']');
}

sub miniLDLT # (A,A_or_Z,M)
{
  my ($i,$j,$k);
  my $A = $_[0];
  my $AZ = $_[1];
  my $M = $_[2];
  comment ("factorize $M x $M block " . ($AZ ? "Z,dee" : "$A,dee"));
  comment ("factorize row 1");
  output ("dee[0] = dRecip(".getA(0,0,$A,$AZ).");\n");
  for ($i=1; $i<$M; $i++) {
    comment ("factorize row ".($i+1));
    for ($j=1; $j<$i; $j++) {
      output (getA($i,$j,$A,$AZ)." -= ");
      for ($k=0; $k<$j; $k++) {
	output (" + ") if $k > 0;
	output (getA($i,$k,$A,$AZ)."*".getA($j,$k,$A,$AZ));
      }
      output (";\n");
    }
    output ("sum = 0;\n");
    for ($j=0; $j<$i; $j++) {
      output ("q1 = ".getA($i,$j,$A,$AZ).";\n");
      output ("q2 = q1 * dee[$j];\n");
      output (getA($i,$j,$A,$AZ)." = q2;\n");
      output ("sum += q1*q2;\n");
    }
    output ("dee[$i] = dRecip(".getA($i,$i,$A,$AZ)." - sum);\n");
  }
  comment ("done factorizing $M x $M block");
}


sub innerScaleAndOuterProductLoop # (M,k)
{
  my $M = $_[0];
  my $k = $_[1];
  my ($i,$j);
  for ($i=1; $i<=$M; $i++) {
    output ("p$i = ell[".ofs2($k,$i-1,'nskip')."];\n");
  }
  output ("dd = dee[$k];\n");
  for ($i=1; $i<=$M; $i++) {
    output ("q$i = p$i*dd;\n");
  }
  for ($i=1; $i<=$M; $i++) {
    output ("ell[".ofs2($k,$i-1,'nskip')."] = q$i;\n");
  }
  for ($i=1; $i<=$M; $i++) {
    for ($j=1; $j<=$i; $j++) {
      my $var = $MADD ? "Z$i$j +=" : "m$i$j =";
      output ("$var p$i*q$j;\n");
    }
  }
  if ($MADD==0) {
  for ($i=1; $i<=$M; $i++) {
    for ($j=1; $j<=$i; $j++) {
        output ("Z$i$j += m$i$j;\n");
      }
    }
  }
}


sub diagRows # (M)
{
  my $M=$_[0];
  comment ("scale the elements in a $M x i block at A(i,0), and also");
  comment ("compute Z = the outer product matrix that we'll need.");
  for ($i=1; $i<=$M; $i++) {
    for ($j=1; $j<=$i; $j++) {
      output ("Z$i$j = 0;\n");
    }
  }
  output ("ell = A+i*nskip1;\n");
  output ("dee = d;\n");
  output ("for (j=i-$UNROLL2; j >= 0; j -= $UNROLL2) {\n");
  for ($i=0; $i < $UNROLL2; $i++) {
    innerScaleAndOuterProductLoop ($M,$i);
  }
  output ("ell += $UNROLL2;\n");
  output ("dee += $UNROLL2;\n");
  output ("}\n");

  if ($UNROLL2 > 1) {
    comment ("compute left-over iterations");
    output ("j += $UNROLL2;\n");
    output ("for (; j > 0; j--) {\n");
    innerScaleAndOuterProductLoop ($M,0);
    output ("ell++;\n");
    output ("dee++;\n");
    output ("}\n");
  }
}


sub diagBlock # (M)
{
  my $M = $_[0];
  comment ("solve for diagonal $M x $M block at A(i,i)");
  for ($i=1; $i<=$M; $i++) {
    for ($j=1; $j<=$i; $j++) {
      output ("Z$i$j = ell[".ofs2($j-1,$i-1,'nskip')."] - Z$i$j;\n");
    }
  }
  output ("dee = d + i;\n");
  miniLDLT ('',1,$M);
  for ($i=2; $i<=$M; $i++) {
    for ($j=1; $j<$i; $j++) {
      output ("ell[".ofs2($j-1,$i-1,'nskip')."] = Z$i$j;\n");
    }
  }
}


sub makeFastLDLT
{
  my ($i,$j,$k);

  # function header
  output (<<END);


void dFactorLDLT (dReal *A, dReal *d, int n, int nskip1)
{
END
  output ("int i,j");
  for ($i=2; $i<$N1; $i++) {
    output (",nskip$i");
  }
  output (";\n");
  output ("dReal sum,*ell,*dee,dd,p1,p2");
  for ($i=3; $i<=$N1; $i++) {
    output (",p$i");
  }
  for ($i=1; $i<=$N1; $i++) {
    output (",q$i");
  }
  for ($i=1; $i<=$N1; $i++) {
    for ($j=1; $j<=$i; $j++) {
      output (",Z$i$j");
      output (",m$i$j") if ! $MADD;	# temporary vars where multiplies put
    }
  }
  output (";\n");
  output ("if (n < 1) return;\n");
  # output ("nskip1 = dPAD(n);\n");   ... not any more
  for ($i=2; $i<$N1; $i++) {
    output ("nskip$i = $i*nskip1;\n");
  }

  output ("\nfor (i=0; i<=n-$N1; i += $N1) {\n");
  comment ("solve L*(D*l)=a, l is scaled elements in $N1 x i block at A(i,0)");
  output ("dSolveL1_$N1 (A,A+i*nskip1,i,nskip1);\n");

  diagRows ($N1);
  diagBlock ($N1);
  output ("}\n");

  comment ("compute the (less than $N1) rows at the bottom");
  output ("switch (n-i) {\n");
  output ("case 0:\n");
  output ("break;\n\n");

  for ($i=1; $i<$N1; $i++) {
    output ("case $i:\n");
    output ("dSolveL1_$i (A,A+i*nskip1,i,nskip1);\n");
    diagRows ($i);
    diagBlock ($i);
    output ("break;\n\n");
  }

  output ("default: *((char*)0)=0;  /* this should never happen! */\n");
  output ("}\n");

  output ("}\n");
}

#############################################################################
# write source code

open (FOUT,">$FNAME.c") or die "can't open $FNAME.c for writing";

# file and function header
output (<<END);
/* generated code, do not edit. */

#include "ode/matrix.h"
END

if ($TYPE eq 'f') {
  for ($i=1; $i <= $N1; $i++) {
    makeFastL1Solve ($i);
  }
  makeFastLDLT;
}
else {
  makeFastL1Solve (1);
  makeRealFastL1Solve;
}
close FOUT;