Welcome to mirror list, hosted at ThFree Co, Russian Federation.

LevelSetAdvect.h « tools « openvdb « internal « openvdb « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 2119720d389d39e537731889afcdc7140d3961da (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2013 DreamWorks Animation LLC
//
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
//
// Redistributions of source code must retain the above copyright
// and license notice and the following restrictions and disclaimer.
//
// *     Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
// LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
//
///////////////////////////////////////////////////////////////////////////
//
///////////////////////////////////////////////////////////////////////////
//
/// @author Ken Museth
///
/// @file LevelSetAdvect.h
///
/// @brief Hyperbolic advection of narrow-band level sets

#ifndef OPENVDB_TOOLS_LEVEL_SET_ADVECT_HAS_BEEN_INCLUDED
#define OPENVDB_TOOLS_LEVEL_SET_ADVECT_HAS_BEEN_INCLUDED

#include "LevelSetTracker.h"
#include "Interpolation.h" // for BoxSampler, etc.
#include <openvdb/math/FiniteDifference.h>

namespace openvdb {
OPENVDB_USE_VERSION_NAMESPACE
namespace OPENVDB_VERSION_NAME {
namespace tools {

/// Below are two simple wrapper classes for advection velocity fields
/// DiscreteField wraps a velocity grid and EnrightField is mostly
/// intended for debugging (it's an analytical divergence free and
/// periodic field). They both share the same API required by the
/// LevelSetAdvection class defined below. Thus, any class with this
/// API should work with LevelSetAdvection.

/// Note the Field wrapper classes below always assume the velocity
/// is represented in the world-frame of reference. For DiscreteField
/// this implies the input grid must contain velocities in world
/// coordinates.

/// @brief Thin wrapper class for a velocity grid
/// @note Consider replacing BoxSampler with StaggeredBoxSampler
template <typename VelGridT, typename Interpolator = BoxSampler>
class DiscreteField
{
public:
    typedef typename VelGridT::ValueType     VectorType;
    typedef typename VectorType::ValueType   ScalarType;

    DiscreteField(const VelGridT &vel): mAccessor(vel.tree()), mTransform(&vel.transform()) {}

    /// @return const reference to the transfrom between world and index space
    /// @note Use this method to determine if a client grid is
    /// aligned with the coordinate space of the velocity grid.
    const math::Transform& transform() const { return *mTransform; }

    /// @return the interpolated velocity at the world space position xyz
    inline VectorType operator() (const Vec3d& xyz, ScalarType) const
    {
        VectorType result = zeroVal<VectorType>();
        Interpolator::sample(mAccessor, mTransform->worldToIndex(xyz), result);
        return result;
    }

    /// @return the velocity at the coordinate space position ijk
    inline VectorType operator() (const Coord& ijk, ScalarType) const
    {
        return mAccessor.getValue(ijk);
    }

private:
    const typename VelGridT::ConstAccessor mAccessor;//Not thread-safe
    const math::Transform*                 mTransform;

}; // end of DiscreteField

/// @brief Analytical, divergence-free and periodic vecloity field
/// @note Primarily intended for debugging!
/// @warning This analytical velocity only produce meaningfull values
/// in the unitbox in world space. In other words make sure any level
/// set surface in fully enclodes in the axis aligned bounding box
/// spanning 0->1 in world units.
template <typename ScalarT = float>
class EnrightField
{
public:
    typedef ScalarT             ScalarType;
    typedef math::Vec3<ScalarT> VectorType;

    EnrightField() {}

    /// @return const reference to the identity transfrom between world and index space
    /// @note Use this method to determine if a client grid is
    /// aligned with the coordinate space of this velocity field
    math::Transform transform() const { return math::Transform(); }

    /// @return the velocity in world units, evaluated at the world
    /// position xyz and at the specified time
    inline VectorType operator() (const Vec3d& xyz, ScalarType time) const;

    /// @return the velocity at the coordinate space position ijk
    inline VectorType operator() (const Coord& ijk, ScalarType time) const
    {
        return (*this)(ijk.asVec3d(), time);
    }
}; // end of EnrightField

/// @brief  Hyperbolic advection of narrow-band level sets in an
/// external velocity field
///
/// The @c FieldType template argument below refers to any functor
/// with the following interface (see tools/VelocityFields.h
/// for examples):
///
/// @code
/// class VelocityField {
///   ...
/// public:
///   openvdb::VectorType operator() (const openvdb::Coord& xyz, ScalarType time) const;
///   ...
/// };
/// @endcode
///
/// @note The functor method returns the velocity field at coordinate
/// position xyz of the advection grid, and for the specified
/// time. Note that since the velocity is returned in the local
/// coordinate space of the grid that is being advected, the functor
/// typically depends on the transformation of that grid. This design
/// is chosen for performance reasons.
///
/// The @c InterruptType template argument below refers to any class
/// with the following interface:
/// @code
/// class Interrupter {
///   ...
/// public:
///   void start(const char* name = NULL)// called when computations begin
///   void end()                         // called when computations end
///   bool wasInterrupted(int percent=-1)// return true to break computation
///};
/// @endcode
///
/// @note If no template argument is provided for this InterruptType
/// the util::NullInterrupter is used which implies that all
/// interrupter calls are no-ops (i.e. incurs no computational overhead).
///

template<typename GridT,
         typename FieldT     = EnrightField<typename GridT::ValueType>,
         typename InterruptT = util::NullInterrupter>
class LevelSetAdvection
{
public:
    typedef GridT                              GridType;
    typedef LevelSetTracker<GridT, InterruptT> TrackerT;
    typedef typename TrackerT::RangeType       RangeType;
    typedef typename TrackerT::LeafType        LeafType;
    typedef typename TrackerT::BufferType      BufferType;
    typedef typename TrackerT::ValueType       ScalarType;
    typedef typename FieldT::VectorType        VectorType;

    /// Main constructor
    LevelSetAdvection(GridT& grid, const FieldT& field, InterruptT* interrupt = NULL):
        mTracker(grid, interrupt), mField(field),
        mSpatialScheme(math::HJWENO5_BIAS),
        mTemporalScheme(math::TVD_RK2) {}

    virtual ~LevelSetAdvection() {};

    /// @return the spatial finite difference scheme
    math::BiasedGradientScheme getSpatialScheme() const { return mSpatialScheme; }
    /// @brief Set the spatial finite difference scheme
    void setSpatialScheme(math::BiasedGradientScheme scheme) { mSpatialScheme = scheme; }

    /// @return the temporal integration scheme
    math::TemporalIntegrationScheme getTemporalScheme() const { return mTemporalScheme; }
    /// @brief Set the spatial finite difference scheme
    void setTemporalScheme(math::TemporalIntegrationScheme scheme) { mTemporalScheme = scheme; }

    /// @return the spatial finite difference scheme
    math::BiasedGradientScheme getTrackerSpatialScheme() const { return mTracker.getSpatialScheme(); }
    /// @brief Set the spatial finite difference scheme
    void setTrackerSpatialScheme(math::BiasedGradientScheme scheme) { mTracker.setSpatialScheme(scheme); }

    /// @return the temporal integration scheme
    math::TemporalIntegrationScheme getTrackerTemporalScheme() const { return mTracker.getTemporalScheme(); }
    /// @brief Set the spatial finite difference scheme
    void setTrackerTemporalScheme(math::TemporalIntegrationScheme scheme) { mTracker.setTemporalScheme(scheme); }

    /// @return The number of normalizations performed per track or
    /// normalize call.
    int  getNormCount() const { return mTracker.getNormCount(); }
    /// @brief Set the number of normalizations performed per track or
    /// normalize call.
    void setNormCount(int n) { mTracker.setNormCount(n); }

    /// @return the grain-size used for multi-threading
    int  getGrainSize() const { return mTracker.getGrainSize(); }
    /// @brief Set the grain-size used for multi-threading.
    /// @note A grainsize of 0 or less disables multi-threading!
    void setGrainSize(int grainsize) { mTracker.setGrainSize(grainsize); }

    /// Advect the level set from it's current time, time0, to it's
    /// final time, time1. If time0>time1 backward advection is performed.
    ///
    /// @return number of CFL iterations used to advect from time0 to time1
    size_t advect(ScalarType time0, ScalarType time1);

private:

    // This templated private class implements all the level set magic.
    template<typename MapT, math::BiasedGradientScheme SpatialScheme,
             math::TemporalIntegrationScheme TemporalScheme>
    class LevelSetAdvect
    {
    public:
        /// Main constructor
        LevelSetAdvect(LevelSetAdvection& parent);
        /// Shallow copy constructor called by tbb::parallel_for() threads
        LevelSetAdvect(const LevelSetAdvect& other);
        /// Shallow copy constructor called by tbb::parallel_reduce() threads
        LevelSetAdvect(LevelSetAdvect& other, tbb::split);
        /// destructor
        virtual ~LevelSetAdvect() {if (mIsMaster) this->clearField();};
        /// Advect the level set from it's current time, time0, to it's final time, time1.
        /// @return number of CFL iterations
        size_t advect(ScalarType time0, ScalarType time1);
        /// Used internally by tbb::parallel_for()
        void operator()(const RangeType& r) const
        {
            if (mTask) mTask(const_cast<LevelSetAdvect*>(this), r);
            else OPENVDB_THROW(ValueError, "task is undefined - don\'t call this method directly");
        }
        /// Used internally by tbb::parallel_reduce()
        void operator()(const RangeType& r)
        {
            if (mTask) mTask(this, r);
            else OPENVDB_THROW(ValueError, "task is undefined - don\'t call this method directly");
        }
        /// This is only called by tbb::parallel_reduce() threads
        void join(const LevelSetAdvect& other) { mMaxAbsV = math::Max(mMaxAbsV, other.mMaxAbsV); }
    private:
        typedef typename boost::function<void (LevelSetAdvect*, const RangeType&)> FuncType;
        LevelSetAdvection& mParent;
        VectorType**       mVec;
        const ScalarType   mMinAbsV;
        ScalarType         mMaxAbsV;
        const MapT*        mMap;
        FuncType           mTask;
        const bool         mIsMaster;
        /// Enum to defeing the type of multi-threading
        enum ThreadingMode { PARALLEL_FOR, PARALLEL_REDUCE }; // for internal use
        // method calling tbb
        void cook(ThreadingMode mode, size_t swapBuffer = 0);
        /// Sample field and return the CFT time step
        typename GridT::ValueType sampleField(ScalarType time0, ScalarType time1);
        void  clearField();
        void  sampleXformedField(const RangeType& r, ScalarType time0, ScalarType time1);
        void  sampleAlignedField(const RangeType& r, ScalarType time0, ScalarType time1);
        // Forward Euler advection steps: Phi(result) = Phi(0) - dt * V.Grad(0);
        void euler1(const RangeType& r, ScalarType dt, Index resultBuffer);
        // Convex combination of Phi and a forward Euler advection steps:
        // Phi(result) = alpha * Phi(phi) + (1-alpha) * (Phi(0) - dt * V.Grad(0));
        void euler2(const RangeType& r, ScalarType dt, ScalarType alpha, Index phiBuffer, Index resultBuffer);
    }; // end of private LevelSetAdvect class

    template<math::BiasedGradientScheme SpatialScheme>
    size_t advect1(ScalarType time0, ScalarType time1);

    template<math::BiasedGradientScheme SpatialScheme,
             math::TemporalIntegrationScheme TemporalScheme>
    size_t advect2(ScalarType time0, ScalarType time1);

    template<math::BiasedGradientScheme SpatialScheme,
             math::TemporalIntegrationScheme TemporalScheme,
             typename MapType>
    size_t advect3(ScalarType time0, ScalarType time1);

    TrackerT                        mTracker;
    //each thread needs a deep copy of the field since it might contain a ValueAccessor
    const FieldT                    mField;
    math::BiasedGradientScheme      mSpatialScheme;
    math::TemporalIntegrationScheme mTemporalScheme;

    // disallow copy by assignment
    void operator=(const LevelSetAdvection& other) {}

};//end of LevelSetAdvection

template<typename GridT, typename FieldT, typename InterruptT>
inline size_t
LevelSetAdvection<GridT, FieldT, InterruptT>::advect(ScalarType time0, ScalarType time1)
{
    switch (mSpatialScheme) {
    case math::FIRST_BIAS:
        return this->advect1<math::FIRST_BIAS  >(time0, time1);
    case math::SECOND_BIAS:
        return this->advect1<math::SECOND_BIAS >(time0, time1);
    case math::THIRD_BIAS:
        return this->advect1<math::THIRD_BIAS  >(time0, time1);
    case math::WENO5_BIAS:
        return this->advect1<math::WENO5_BIAS  >(time0, time1);
    case math::HJWENO5_BIAS:
        return this->advect1<math::HJWENO5_BIAS>(time0, time1);
    default:
        OPENVDB_THROW(ValueError, "Spatial difference scheme not supported!");
    }
    return 0;
}

template<typename GridT, typename FieldT, typename InterruptT>
template<math::BiasedGradientScheme SpatialScheme>
inline size_t
LevelSetAdvection<GridT, FieldT, InterruptT>::advect1(ScalarType time0, ScalarType time1)
{
    switch (mTemporalScheme) {
    case math::TVD_RK1:
        return this->advect2<SpatialScheme, math::TVD_RK1>(time0, time1);
    case math::TVD_RK2:
        return this->advect2<SpatialScheme, math::TVD_RK2>(time0, time1);
    case math::TVD_RK3:
        return this->advect2<SpatialScheme, math::TVD_RK3>(time0, time1);
    default:
        OPENVDB_THROW(ValueError, "Temporal integration scheme not supported!");
    }
    return 0;
}

template<typename GridT, typename FieldT, typename InterruptT>
template<math::BiasedGradientScheme SpatialScheme,
         math::TemporalIntegrationScheme TemporalScheme>
inline size_t
LevelSetAdvection<GridT, FieldT, InterruptT>::advect2(ScalarType time0, ScalarType time1)
{
    const math::Transform& trans = mTracker.grid().transform();
    if (trans.mapType() == math::UniformScaleMap::mapType()) {
        return this->advect3<SpatialScheme, TemporalScheme, math::UniformScaleMap>(time0, time1);
    } else if (trans.mapType() == math::UniformScaleTranslateMap::mapType()) {
        return this->advect3<SpatialScheme, TemporalScheme, math::UniformScaleTranslateMap>(time0, time1);
    } else if (trans.mapType() == math::UnitaryMap::mapType()) {
        return this->advect3<SpatialScheme, TemporalScheme, math::UnitaryMap    >(time0, time1);
    } else if (trans.mapType() == math::TranslationMap::mapType()) {
        return this->advect3<SpatialScheme, TemporalScheme, math::TranslationMap>(time0, time1);
    } else {
        OPENVDB_THROW(ValueError, "MapType not supported!");
    }
    return 0;
}

template<typename GridT, typename FieldT, typename InterruptT>
template<math::BiasedGradientScheme SpatialScheme,
         math::TemporalIntegrationScheme TemporalScheme,
         typename MapT>
inline size_t
LevelSetAdvection<GridT, FieldT, InterruptT>::advect3(ScalarType time0, ScalarType time1)
{
    LevelSetAdvect<MapT, SpatialScheme, TemporalScheme> tmp(*this);
    return tmp.advect(time0, time1);
}

///////////////////////////////////////////////////////////////////////

template <typename ScalarT>
inline math::Vec3<ScalarT>
EnrightField<ScalarT>::operator() (const Vec3d& xyz, ScalarType time) const
{
    static const ScalarT pi = ScalarT(3.1415926535897931), phase = pi / ScalarT(3.0);
    const ScalarT Px =  pi * ScalarT(xyz[0]), Py = pi * ScalarT(xyz[1]), Pz = pi * ScalarT(xyz[2]);
    const ScalarT tr =  cos(ScalarT(time) * phase);
    const ScalarT a  =  sin(ScalarT(2.0)*Py);
    const ScalarT b  = -sin(ScalarT(2.0)*Px);
    const ScalarT c  =  sin(ScalarT(2.0)*Pz);
    return math::Vec3<ScalarT>(
        tr * ( ScalarT(2) * math::Pow2(sin(Px)) * a * c ),
        tr * ( b * math::Pow2(sin(Py)) * c ),
        tr * ( b * a * math::Pow2(sin(Pz)) ));
}


///////////////////////////////////////////////////////////////////////


template<typename GridT, typename FieldT, typename InterruptT>
template <typename MapT, math::BiasedGradientScheme SpatialScheme,
          math::TemporalIntegrationScheme TemporalScheme>
inline
LevelSetAdvection<GridT, FieldT, InterruptT>::
LevelSetAdvect<MapT, SpatialScheme, TemporalScheme>::
LevelSetAdvect(LevelSetAdvection& parent):
    mParent(parent),
    mVec(NULL),
    mMinAbsV(1e-6),
    mMap(parent.mTracker.grid().transform().template constMap<MapT>().get()),
    mTask(0),
    mIsMaster(true)
{
}

template<typename GridT, typename FieldT, typename InterruptT>
template <typename MapT, math::BiasedGradientScheme SpatialScheme,
          math::TemporalIntegrationScheme TemporalScheme>
inline
LevelSetAdvection<GridT, FieldT, InterruptT>::
LevelSetAdvect<MapT, SpatialScheme, TemporalScheme>::
LevelSetAdvect(const LevelSetAdvect& other):
    mParent(other.mParent),
    mVec(other.mVec),
    mMinAbsV(other.mMinAbsV),
    mMaxAbsV(other.mMaxAbsV),
    mMap(other.mMap),
    mTask(other.mTask),
    mIsMaster(false)
{
}

template<typename GridT, typename FieldT, typename InterruptT>
template <typename MapT, math::BiasedGradientScheme SpatialScheme,
          math::TemporalIntegrationScheme TemporalScheme>
inline
LevelSetAdvection<GridT, FieldT, InterruptT>::
LevelSetAdvect<MapT, SpatialScheme, TemporalScheme>::
LevelSetAdvect(LevelSetAdvect& other, tbb::split):
    mParent(other.mParent),
    mVec(other.mVec),
    mMinAbsV(other.mMinAbsV),
    mMaxAbsV(other.mMaxAbsV),
    mMap(other.mMap),
    mTask(other.mTask),
    mIsMaster(false)
{
}

template<typename GridT, typename FieldT, typename InterruptT>
template <typename MapT, math::BiasedGradientScheme SpatialScheme,
          math::TemporalIntegrationScheme TemporalScheme>
inline size_t
LevelSetAdvection<GridT, FieldT, InterruptT>::
LevelSetAdvect<MapT, SpatialScheme, TemporalScheme>::
advect(ScalarType time0, ScalarType time1)
{
    size_t countCFL = 0;
    if ( math::isZero(time0 - time1) ) return countCFL;
    const bool isForward = time0 < time1;
    while ((isForward ? time0<time1 : time0>time1) && mParent.mTracker.checkInterrupter()) {
        /// Make sure we have enough temporal auxiliary buffers
        mParent.mTracker.leafs().rebuildAuxBuffers(TemporalScheme == math::TVD_RK3 ? 2 : 1);

        const ScalarType dt = this->sampleField(time0, time1);
        if ( math::isZero(dt) ) break;//V is essentially zero so terminate

        OPENVDB_NO_UNREACHABLE_CODE_WARNING_BEGIN //switch is resolved at compile-time
        switch(TemporalScheme) {
        case math::TVD_RK1:
            // Perform one explicit Euler step: t1 = t0 + dt
            // Phi_t1(1) = Phi_t0(0) - dt * VdotG_t0(0)
            mTask = boost::bind(&LevelSetAdvect::euler1, _1, _2, dt, /*result=*/1);
            // Cook and swap buffer 0 and 1 such that Phi_t1(0) and Phi_t0(1)
            this->cook(PARALLEL_FOR, 1);
            break;
        case math::TVD_RK2:
            // Perform one explicit Euler step: t1 = t0 + dt
            // Phi_t1(1) = Phi_t0(0) - dt * VdotG_t0(0)
            mTask = boost::bind(&LevelSetAdvect::euler1, _1, _2, dt, /*result=*/1);
            // Cook and swap buffer 0 and 1 such that Phi_t1(0) and Phi_t0(1)
            this->cook(PARALLEL_FOR, 1);

            // Convex combine explict Euler step: t2 = t0 + dt
            // Phi_t2(1) = 1/2 * Phi_t0(1) + 1/2 * (Phi_t1(0) - dt * V.Grad_t1(0))
            mTask = boost::bind(&LevelSetAdvect::euler2, _1, _2, dt, ScalarType(0.5), /*phi=*/1, /*result=*/1);
            // Cook and swap buffer 0 and 1 such that Phi_t2(0) and Phi_t1(1)
            this->cook(PARALLEL_FOR, 1);
            break;
        case math::TVD_RK3:
            // Perform one explicit Euler step: t1 = t0 + dt
            // Phi_t1(1) = Phi_t0(0) - dt * VdotG_t0(0)
            mTask = boost::bind(&LevelSetAdvect::euler1, _1, _2, dt, /*result=*/1);
            // Cook and swap buffer 0 and 1 such that Phi_t1(0) and Phi_t0(1)
            this->cook(PARALLEL_FOR, 1);

            // Convex combine explict Euler step: t2 = t0 + dt/2
            // Phi_t2(2) = 3/4 * Phi_t0(1) + 1/4 * (Phi_t1(0) - dt * V.Grad_t1(0))
            mTask = boost::bind(&LevelSetAdvect::euler2, _1, _2, dt, ScalarType(0.75), /*phi=*/1, /*result=*/2);
            // Cook and swap buffer 0 and 2 such that Phi_t2(0) and Phi_t1(2)
            this->cook(PARALLEL_FOR, 2);

            // Convex combine explict Euler step: t3 = t0 + dt
            // Phi_t3(2) = 1/3 * Phi_t0(1) + 2/3 * (Phi_t2(0) - dt * V.Grad_t2(0)
            mTask = boost::bind(&LevelSetAdvect::euler2, _1, _2, dt, ScalarType(1.0/3.0), /*phi=*/1, /*result=*/2);
            // Cook and swap buffer 0 and 2 such that Phi_t3(0) and Phi_t2(2)
            this->cook(PARALLEL_FOR, 2);
            break;
        default:
            OPENVDB_THROW(ValueError, "Temporal integration scheme not supported!");
        }//end of compile-time resolved switch
        OPENVDB_NO_UNREACHABLE_CODE_WARNING_END
            
        time0 += isForward ? dt : -dt;
        ++countCFL;
        mParent.mTracker.leafs().removeAuxBuffers();
        this->clearField();
        /// Track the narrow band
        mParent.mTracker.track();
    }//end wile-loop over time
    return countCFL;//number of CLF propagation steps
}

template<typename GridT, typename FieldT, typename InterruptT>
template<typename MapT, math::BiasedGradientScheme SpatialScheme,
	math::TemporalIntegrationScheme TemporalScheme>
inline typename GridT::ValueType
LevelSetAdvection<GridT, FieldT, InterruptT>::
LevelSetAdvect<MapT, SpatialScheme, TemporalScheme>::
sampleField(ScalarType time0, ScalarType time1)
{
    mMaxAbsV = mMinAbsV;
    const size_t leafCount = mParent.mTracker.leafs().leafCount();
    if (leafCount==0) return ScalarType(0.0);
    mVec = new VectorType*[leafCount];
    if (mParent.mField.transform() == mParent.mTracker.grid().transform()) {
        mTask = boost::bind(&LevelSetAdvect::sampleAlignedField, _1, _2, time0, time1);
    } else {
        mTask = boost::bind(&LevelSetAdvect::sampleXformedField, _1, _2, time0, time1);
    }
    this->cook(PARALLEL_REDUCE);
    if (math::isExactlyEqual(mMinAbsV, mMaxAbsV)) return ScalarType(0.0);//V is essentially zero
    static const ScalarType CFL = (TemporalScheme == math::TVD_RK1 ? ScalarType(0.3) :
                                   TemporalScheme == math::TVD_RK2 ? ScalarType(0.9) :
                                   ScalarType(1.0))/math::Sqrt(ScalarType(3.0));
    const ScalarType dt = math::Abs(time1 - time0), dx = mParent.mTracker.voxelSize();
    return math::Min(dt, ScalarType(CFL*dx/math::Sqrt(mMaxAbsV)));
}

template<typename GridT, typename FieldT, typename InterruptT>
template <typename MapT, math::BiasedGradientScheme SpatialScheme,
          math::TemporalIntegrationScheme TemporalScheme>
inline void
LevelSetAdvection<GridT, FieldT, InterruptT>::
LevelSetAdvect<MapT, SpatialScheme, TemporalScheme>::
sampleXformedField(const RangeType& range, ScalarType time0, ScalarType time1)
{
    const bool isForward = time0 < time1;
    typedef typename LeafType::ValueOnCIter VoxelIterT;
    const MapT& map = *mMap;
    mParent.mTracker.checkInterrupter();
    for (size_t n=range.begin(), e=range.end(); n != e; ++n) {
        const LeafType& leaf = mParent.mTracker.leafs().leaf(n);
        VectorType* vec = new VectorType[leaf.onVoxelCount()];
        int m = 0;
        for (VoxelIterT iter = leaf.cbeginValueOn(); iter; ++iter, ++m) {
            const VectorType V = mParent.mField(map.applyMap(iter.getCoord().asVec3d()), time0);
            mMaxAbsV = math::Max(mMaxAbsV, ScalarType(math::Pow2(V[0])+math::Pow2(V[1])+math::Pow2(V[2])));
            vec[m] = isForward ? V : -V;
        }
        mVec[n] = vec;
    }
}

template<typename GridT, typename FieldT, typename InterruptT>
template <typename MapT, math::BiasedGradientScheme SpatialScheme,
          math::TemporalIntegrationScheme TemporalScheme>
inline void
LevelSetAdvection<GridT, FieldT, InterruptT>::
LevelSetAdvect<MapT, SpatialScheme, TemporalScheme>::
sampleAlignedField(const RangeType& range, ScalarType time0, ScalarType time1)
{
    const bool isForward = time0 < time1;
    typedef typename LeafType::ValueOnCIter VoxelIterT;
    mParent.mTracker.checkInterrupter();
    for (size_t n=range.begin(), e=range.end(); n != e; ++n) {
        const LeafType& leaf = mParent.mTracker.leafs().leaf(n);
        VectorType* vec = new VectorType[leaf.onVoxelCount()];
        int m = 0;
        for (VoxelIterT iter = leaf.cbeginValueOn(); iter; ++iter, ++m) {
            const VectorType V = mParent.mField(iter.getCoord(), time0);
            mMaxAbsV = math::Max(mMaxAbsV, ScalarType(math::Pow2(V[0])+math::Pow2(V[1])+math::Pow2(V[2])));
            vec[m] = isForward ? V : -V;
        }
        mVec[n] = vec;
    }
}

template<typename GridT, typename FieldT, typename InterruptT>
template <typename MapT, math::BiasedGradientScheme SpatialScheme,
          math::TemporalIntegrationScheme TemporalScheme>
inline void
LevelSetAdvection<GridT, FieldT, InterruptT>::
LevelSetAdvect<MapT, SpatialScheme, TemporalScheme>::
clearField()
{
    if (mVec == NULL) return;
    for (size_t n=0, e=mParent.mTracker.leafs().leafCount(); n<e; ++n) delete [] mVec[n];
    delete [] mVec;
    mVec = NULL;
}

template<typename GridT, typename FieldT, typename InterruptT>
template <typename MapT, math::BiasedGradientScheme SpatialScheme,
          math::TemporalIntegrationScheme TemporalScheme>
inline void
LevelSetAdvection<GridT, FieldT, InterruptT>::
LevelSetAdvect<MapT, SpatialScheme, TemporalScheme>::
cook(ThreadingMode mode, size_t swapBuffer)
{
    mParent.mTracker.startInterrupter("Advecting level set");

    if (mParent.mTracker.getGrainSize()==0) {
        (*this)(mParent.mTracker.leafs().getRange());
    } else if (mode == PARALLEL_FOR) {
        tbb::parallel_for(mParent.mTracker.leafs().getRange(mParent.mTracker.getGrainSize()), *this);
    } else if (mode == PARALLEL_REDUCE) {
        tbb::parallel_reduce(mParent.mTracker.leafs().getRange(mParent.mTracker.getGrainSize()), *this);
    } else {
        throw std::runtime_error("Undefined threading mode");
    }

    mParent.mTracker.leafs().swapLeafBuffer(swapBuffer, mParent.mTracker.getGrainSize()==0);

    mParent.mTracker.endInterrupter();
}

// Forward Euler advection steps:
// Phi(result) = Phi(0) - dt * V.Grad(0);
template<typename GridT, typename FieldT, typename InterruptT>
template <typename MapT, math::BiasedGradientScheme SpatialScheme,
          math::TemporalIntegrationScheme TemporalScheme>
inline void
LevelSetAdvection<GridT, FieldT, InterruptT>::
LevelSetAdvect<MapT, SpatialScheme, TemporalScheme>::
euler1(const RangeType& range, ScalarType dt, Index resultBuffer)
{
    typedef math::BIAS_SCHEME<SpatialScheme>                             Scheme;
    typedef typename Scheme::template ISStencil<GridType>::StencilType   Stencil;
    typedef typename LeafType::ValueOnCIter VoxelIterT;
    mParent.mTracker.checkInterrupter();
    const MapT& map = *mMap;
    typename TrackerT::LeafManagerType& leafs = mParent.mTracker.leafs();
    Stencil stencil(mParent.mTracker.grid());
    for (size_t n=range.begin(), e=range.end(); n != e; ++n) {
        BufferType& result = leafs.getBuffer(n, resultBuffer);
        const VectorType* vec = mVec[n];
        int m=0;
        for (VoxelIterT iter = leafs.leaf(n).cbeginValueOn(); iter; ++iter, ++m) {
            stencil.moveTo(iter);
            const VectorType V = vec[m], G = math::GradientBiased<MapT, SpatialScheme>::result(map, stencil, V);
            result.setValue(iter.pos(), *iter - dt * V.dot(G));
        }
    }
}

// Convex combination of Phi and a forward Euler advection steps:
// Phi(result) = alpha * Phi(phi) + (1-alpha) * (Phi(0) - dt * V.Grad(0));
template<typename GridT, typename FieldT, typename InterruptT>
template <typename MapT, math::BiasedGradientScheme SpatialScheme,
          math::TemporalIntegrationScheme TemporalScheme>
inline void
LevelSetAdvection<GridT, FieldT, InterruptT>::
LevelSetAdvect<MapT, SpatialScheme, TemporalScheme>::
euler2(const RangeType& range, ScalarType dt, ScalarType alpha, Index phiBuffer, Index resultBuffer)
{
    typedef math::BIAS_SCHEME<SpatialScheme>                             Scheme;
    typedef typename Scheme::template ISStencil<GridType>::StencilType   Stencil;
    typedef typename LeafType::ValueOnCIter VoxelIterT;
    mParent.mTracker.checkInterrupter();
    const MapT& map = *mMap;
    typename TrackerT::LeafManagerType& leafs = mParent.mTracker.leafs();
    const ScalarType beta = ScalarType(1.0) - alpha;
    Stencil stencil(mParent.mTracker.grid());
    for (size_t n=range.begin(), e=range.end(); n != e; ++n) {
        const BufferType& phi = leafs.getBuffer(n, phiBuffer);
        BufferType& result = leafs.getBuffer(n, resultBuffer);
        const VectorType* vec = mVec[n];
        int m=0;
        for (VoxelIterT iter = leafs.leaf(n).cbeginValueOn(); iter; ++iter, ++m) {
            stencil.moveTo(iter);
            const VectorType V = vec[m], G = math::GradientBiased<MapT, SpatialScheme>::result(map, stencil, V);
            result.setValue(iter.pos(), alpha*phi[iter.pos()] + beta*(*iter - dt * V.dot(G)));
        }
    }
}

} // namespace tools
} // namespace OPENVDB_VERSION_NAME
} // namespace openvdb

#endif // OPENVDB_TOOLS_LEVEL_SET_ADVECT_HAS_BEEN_INCLUDED

// Copyright (c) 2012-2013 DreamWorks Animation LLC
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )