Welcome to mirror list, hosted at ThFree Co, Russian Federation.

RayIntersector.h « tools « openvdb « internal « openvdb « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: f714289f2ed1e6760f070160e275df8c1f34509d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2013 DreamWorks Animation LLC
//
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
//
// Redistributions of source code must retain the above copyright
// and license notice and the following restrictions and disclaimer.
//
// *     Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
// LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
//
///////////////////////////////////////////////////////////////////////////
///
/// @file RayIntersector.h
///
/// @author Ken Museth
///
/// @brief Accelerated intersection of a ray with a narrow-band level
/// set or a generic (e.g. density) volume. This will of course be
/// useful for respectively surface and volume rendering.
///
/// @details This file defines two main classes,
/// LevelSetRayIntersector and VolumeRayIntersector, as well as the
/// three support classes LevelSetHDDA, VolumeHDDA and LinearSearchImpl.
/// The LevelSetRayIntersector is templated on the LinearSearchImpl class
/// and calls instances of the LevelSetHDDA class. The reason to split
/// level set ray intersection into three classes is twofold. First
/// LevelSetRayIntersector defines the public API for client code and
/// LinearSearchImpl defines the actual algorithm used for the
/// ray level-set intersection. In other words this design will allow
/// for the public API to be fixed while the intersection algorithm
/// can change without resolving to (slow) virtual methods. Second,
/// LevelSetHDDA, which implements a hierarchical Differential Digital
/// Analyzer, relies on partial template specialization, so it has to
/// be a standalone class (as opposed to a member class of
/// LevelSetRayIntersector). The VolumeRayIntersector is conceptually
/// much simpler then the LevelSetRayIntersector, and hence it only
/// depends on VolumeHDDA that implements the hierarchical
/// Differential Digital Analyzer.


#ifndef OPENVDB_TOOLS_RAYINTERSECTOR_HAS_BEEN_INCLUDED
#define OPENVDB_TOOLS_RAYINTERSECTOR_HAS_BEEN_INCLUDED

#include <openvdb/math/DDA.h>
#include <openvdb/math/Math.h>
#include <openvdb/math/Ray.h>
#include <openvdb/math/Stencils.h>
#include <openvdb/Grid.h>
#include <openvdb/Types.h>
#include "Morphology.h"
#include <boost/utility.hpp>
#include <boost/type_traits/is_floating_point.hpp>


namespace openvdb {
OPENVDB_USE_VERSION_NAMESPACE
namespace OPENVDB_VERSION_NAME {
namespace tools {

// Helper class that implements the actual search of the zero-crossing
// of the level set along the direction of a ray. This particular
// implementation uses iterative linear search.
template<typename GridT, int Iterations = 0, typename RealT = double>
class LinearSearchImpl;


///////////////////////////////////// LevelSetRayIntersector /////////////////////////////////////


/// @brief This class provides the public API for intersecting a ray
/// with a narrow-band level set.
///
/// @details It wraps an SearchImplT with a simple public API and
/// performs the actual hierarchical tree node and voxel traversal.
///
/// @warning Use the (default) copy-constructor to make sure each
/// computational thread has their own instance of this class. This is
/// important since the SearchImplT contains a ValueAccessor that is
/// not thread-safe. However copying is very efficient.
///
/// @see tools/RayTracer.h for examples of intended usage.
///
/// @todo Add TrilinearSearchImpl, as an alternative to LinearSearchImpl,
/// that performs analytical 3D trilinear intersection tests, i.e., solves
/// cubic equations. This is slower but also more accurate than the 1D
/// linear interpolation in LinearSearchImpl.
template<typename GridT,
         typename SearchImplT = LinearSearchImpl<GridT>,
         int NodeLevel = GridT::TreeType::RootNodeType::ChildNodeType::LEVEL,
         typename RayT = math::Ray<Real> >
class LevelSetRayIntersector
{
public:
    typedef GridT                         GridType;
    typedef RayT                          RayType;
    typedef typename RayT::RealType       RealType;
    typedef typename RayT::Vec3T          Vec3Type;
    typedef typename GridT::ValueType     ValueT;
    typedef typename GridT::TreeType      TreeT;

    BOOST_STATIC_ASSERT( NodeLevel >= -1 && NodeLevel < int(TreeT::DEPTH)-1);
    BOOST_STATIC_ASSERT(boost::is_floating_point<ValueT>::value);

    /// @brief Constructor
    /// @param grid level set grid to intersect rays against.
    /// @param isoValue optional iso-value for the ray-intersection.
    LevelSetRayIntersector(const GridT& grid, const ValueT& isoValue = zeroVal<ValueT>())
        : mTester(grid, isoValue)
    {
        if (!grid.hasUniformVoxels() ) {
            OPENVDB_THROW(RuntimeError,
                          "LevelSetRayIntersector only supports uniform voxels!");
        }
        if (grid.getGridClass() != GRID_LEVEL_SET) {
            OPENVDB_THROW(RuntimeError,
                          "LevelSetRayIntersector only supports level sets!"
                          "\nUse Grid::setGridClass(openvdb::GRID_LEVEL_SET)");
        }
    }

    /// @brief Return the iso-value used for ray-intersections
    const ValueT& getIsoValue() const { return mTester.getIsoValue(); }

    /// @brief Return @c true if the index-space ray intersects the level set.
    /// @param iRay ray represented in index space.
    bool intersectsIS(const RayType& iRay) const
    {
        if (!mTester.setIndexRay(iRay)) return false;//missed bbox
        return math::LevelSetHDDA<TreeT, NodeLevel>::test(mTester);
    }

    /// @brief Return @c true if the index-space ray intersects the level set
    /// @param iRay  ray represented in index space.
    /// @param iTime if an intersection was found it is assigned the time of the
    ///              intersection along the index ray.
    bool intersectsIS(const RayType& iRay, Real &iTime) const
    {
        if (!mTester.setIndexRay(iRay)) return false;//missed bbox
        iTime = mTester.getIndexTime();
        return math::LevelSetHDDA<TreeT, NodeLevel>::test(mTester);
    }

    /// @brief Return @c true if the index-space ray intersects the level set.
    /// @param iRay ray represented in index space.
    /// @param xyz  if an intersection was found it is assigned the
    ///             intersection point in index space, otherwise it is unchanged.
    bool intersectsIS(const RayType& iRay, Vec3Type& xyz) const
    {
        if (!mTester.setIndexRay(iRay)) return false;//missed bbox
        if (!math::LevelSetHDDA<TreeT, NodeLevel>::test(mTester)) return false;//missed level set
        mTester.getIndexPos(xyz);
        return true;
    }

    /// @brief Return @c true if the index-space ray intersects the level set.
    /// @param iRay  ray represented in index space.
    /// @param xyz   if an intersection was found it is assigned the
    ///              intersection point in index space, otherwise it is unchanged.
    /// @param iTime if an intersection was found it is assigned the time of the
    ///              intersection along the index ray.
    bool intersectsIS(const RayType& iRay, Vec3Type& xyz, Real &iTime) const
    {
        if (!mTester.setIndexRay(iRay)) return false;//missed bbox
        if (!math::LevelSetHDDA<TreeT, NodeLevel>::test(mTester)) return false;//missed level set
        mTester.getIndexPos(xyz);
        iTime = mTester.getIndexTime();
        return true;
    }

    /// @brief Return @c true if the world-space ray intersects the level set.
    /// @param wRay   ray represented in world space.
    bool intersectsWS(const RayType& wRay) const
    {
        if (!mTester.setWorldRay(wRay)) return false;//missed bbox
        return math::LevelSetHDDA<TreeT, NodeLevel>::test(mTester);
    }

    /// @brief Return @c true if the world-space ray intersects the level set.
    /// @param wRay   ray represented in world space.
    /// @param wTime  if an intersection was found it is assigned the time of the
    ///               intersection along the world ray.
    bool intersectsWS(const RayType& wRay, Real &wTime) const
    {
        if (!mTester.setWorldRay(wRay)) return false;//missed bbox
        wTime = mTester.getWorldTime();
        return math::LevelSetHDDA<TreeT, NodeLevel>::test(mTester);
    }

    /// @brief Return @c true if the world-space ray intersects the level set.
    /// @param wRay   ray represented in world space.
    /// @param world  if an intersection was found it is assigned the
    ///               intersection point in world space, otherwise it is unchanged
    bool intersectsWS(const RayType& wRay, Vec3Type& world) const
    {
        if (!mTester.setWorldRay(wRay)) return false;//missed bbox
        if (!math::LevelSetHDDA<TreeT, NodeLevel>::test(mTester)) return false;//missed level set
        mTester.getWorldPos(world);
        return true;
    }

    /// @brief Return @c true if the world-space ray intersects the level set.
    /// @param wRay   ray represented in world space.
    /// @param world  if an intersection was found it is assigned the
    ///               intersection point in world space, otherwise it is unchanged.
    /// @param wTime  if an intersection was found it is assigned the time of the
    ///               intersection along the world ray.
    bool intersectsWS(const RayType& wRay, Vec3Type& world, Real &wTime) const
    {
        if (!mTester.setWorldRay(wRay)) return false;//missed bbox
        if (!math::LevelSetHDDA<TreeT, NodeLevel>::test(mTester)) return false;//missed level set
        mTester.getWorldPos(world);
        wTime = mTester.getWorldTime();
        return true;
    }

    /// @brief Return @c true if the world-space ray intersects the level set.
    /// @param wRay   ray represented in world space.
    /// @param world  if an intersection was found it is assigned the
    ///               intersection point in world space, otherwise it is unchanged.
    /// @param normal if an intersection was found it is assigned the normal
    ///               of the level set surface in world space, otherwise it is unchanged.
    bool intersectsWS(const RayType& wRay, Vec3Type& world, Vec3Type& normal) const
    {
        if (!mTester.setWorldRay(wRay)) return false;//missed bbox
        if (!math::LevelSetHDDA<TreeT, NodeLevel>::test(mTester)) return false;//missed level set
        mTester.getWorldPosAndNml(world, normal);
        return true;
    }

    /// @brief Return @c true if the world-space ray intersects the level set.
    /// @param wRay   ray represented in world space.
    /// @param world  if an intersection was found it is assigned the
    ///               intersection point in world space, otherwise it is unchanged.
    /// @param normal if an intersection was found it is assigned the normal
    ///               of the level set surface in world space, otherwise it is unchanged.
    /// @param wTime  if an intersection was found it is assigned the time of the
    ///               intersection along the world ray.
    bool intersectsWS(const RayType& wRay, Vec3Type& world, Vec3Type& normal, Real &wTime) const
    {
        if (!mTester.setWorldRay(wRay)) return false;//missed bbox
        if (!math::LevelSetHDDA<TreeT, NodeLevel>::test(mTester)) return false;//missed level set
        mTester.getWorldPosAndNml(world, normal);
        wTime = mTester.getWorldTime();
        return true;
    }

private:

    mutable SearchImplT mTester;

};// LevelSetRayIntersector


////////////////////////////////////// VolumeRayIntersector //////////////////////////////////////


/// @brief This class provides the public API for intersecting a ray
/// with a generic (e.g. density) volume.
/// @details Internally it performs the actual hierarchical tree node traversal.
/// @warning Use the (default) copy-constructor to make sure each
/// computational thread has their own instance of this class. This is
/// important since it contains a ValueAccessor that is
/// not thread-safe and a CoordBBox of the active voxels that should
/// not be re-computed for each thread. However copying is very efficient.
/// @par Example:
/// @code
/// // Create an instance for the master thread
/// VolumeRayIntersector inter(grid);
/// // For each additional thread use the copy contructor. This
/// // amortizes the overhead of computing the bbox of the active voxels!
/// VolumeRayIntersector inter2(inter);
/// // Before each ray-traversal set the index ray.
/// iter.setIndexRay(ray);
/// // or world ray
/// iter.setWorldRay(ray);
/// // Now you can begin the ray-marching using consecutive calls to VolumeRayIntersector::march
/// double t0=0, t1=0;// note the entry and exit times are with respect to the INDEX ray
/// while ( inter.march(t0, t1) ) {
///   // perform line-integration between t0 and t1
/// }}
/// @endcode
template<typename GridT,
         int NodeLevel = GridT::TreeType::RootNodeType::ChildNodeType::LEVEL,
         typename RayT = math::Ray<Real> >
class VolumeRayIntersector
{
public:
    typedef GridT                         GridType;
    typedef RayT                          RayType;
    typedef typename RayT::RealType       RealType;
    typedef typename GridT::TreeType::RootNodeType RootType;
    typedef tree::Tree<typename RootType::template ValueConverter<bool>::Type> TreeT;

    BOOST_STATIC_ASSERT( NodeLevel >= 0 && NodeLevel < int(TreeT::DEPTH)-1);

    /// @brief Grid constructor
    /// @param grid Generic grid to intersect rays against.
    /// @param dilationCount The number of voxel dilations performed
    /// on (a boolean copy of) the input grid. This allows the
    /// intersector to account for the size of interpolation kernels
    /// in client code.
    /// @throw RuntimeError if the voxels of the grid are not uniform
    /// or the grid is empty.
    VolumeRayIntersector(const GridT& grid, int dilationCount = 0)
        : mIsMaster(true)
        , mTree(new TreeT(grid.tree(), false, TopologyCopy()))
        , mGrid(&grid)
        , mAccessor(*mTree)
    {
        if (!grid.hasUniformVoxels() ) {
            OPENVDB_THROW(RuntimeError,
                          "VolumeRayIntersector only supports uniform voxels!");
        }
        if ( grid.empty() ) {
            OPENVDB_THROW(RuntimeError, "LinearSearchImpl does not supports empty grids");
        }

        // Dilate active voxels to better account for the size of interpolation kernels
        tools::dilateVoxels(*mTree, dilationCount);

        mTree->root().evalActiveBoundingBox(mBBox, /*visit individual voxels*/false);

        mBBox.max().offset(1);//padding so the bbox of a node becomes (origin,origin + node_dim)
    }

    /// @brief Grid and BBox constructor
    /// @param grid Generic grid to intersect rays against.
    /// @param bbox The axis-aligned bounding-box in the index space of the grid.
    /// @warning It is assumed that bbox = (min, min + dim) where min denotes
    /// to the smallest grid coordinates and dim are the integer length of the bbox.
    /// @throw RuntimeError if the voxels of the grid are not uniform
    /// or the grid is empty.
    VolumeRayIntersector(const GridT& grid, const math::CoordBBox& bbox)
        : mIsMaster(true)
        , mTree(new TreeT(grid.tree(), false, TopologyCopy()))
        , mGrid(&grid)
        , mAccessor(*mTree)
        , mBBox(bbox)
    {
        if (!grid.hasUniformVoxels() ) {
            OPENVDB_THROW(RuntimeError,
                          "VolumeRayIntersector only supports uniform voxels!");
        }
        if ( grid.empty() ) {
            OPENVDB_THROW(RuntimeError, "LinearSearchImpl does not supports empty grids");
        }
    }

    /// @brief Shallow copy constructor
    /// @warning This copy constructor creates shallow copies of data
    /// members of the instance passed as the argument. For
    /// performance reasons we are not using shared pointers (their
    /// mutex-lock impairs multi-threading).
    VolumeRayIntersector(const VolumeRayIntersector& other)
        : mIsMaster(false)
        , mTree(other.mTree)//shallow copy
        , mGrid(other.mGrid)//shallow copy
        , mAccessor(*mTree)//deep copy
        , mRay(other.mRay)//deep copy
        , mTmax(other.mTmax)//deep copy
        , mBBox(other.mBBox)//deep copy
    {
    }

    /// @brief Destructor
    ~VolumeRayIntersector() { if (mIsMaster) delete mTree; }

    /// @brief Return @c false if the index ray misses the bbox of the grid.
    /// @param iRay Ray represented in index space.
    /// @warning Call this method (or setWorldRay) before the ray
    /// traversal starts and use the return value to decide if further
    /// marching is required.
    inline bool setIndexRay(const RayT& iRay)
    {
        mRay = iRay;
        const bool hit = mRay.clip(mBBox);
        if (hit) mTmax = mRay.t1();
        return hit;
    }

    /// @brief Return @c false if the world ray misses the bbox of the grid.
    /// @param wRay Ray represented in world space.
    /// @warning Call this method (or setIndexRay) before the ray
    /// traversal starts and use the return value to decide if further
    /// marching is required.
    /// @details Since hit times are computed with repect to the ray
    /// represented in index space of the current grid, it is
    /// recommended that either the client code uses getIndexPos to
    /// compute index position from hit times or alternatively keeps
    /// an instance of the index ray and instead uses setIndexRay to
    /// initialize the ray.
    inline bool setWorldRay(const RayT& wRay)
    {
        return this->setIndexRay(wRay.worldToIndex(*mGrid));
    }

    inline typename RayT::TimeSpan march()
    {
        const typename RayT::TimeSpan t = mHDDA.march(mRay, mAccessor);
        if (t.t1>0) mRay.setTimes(t.t1 + math::Delta<RealType>::value(), mTmax);
        return t;
    }

    /// @brief Return @c true if the ray intersects active values,
    /// i.e. either active voxels or tiles. Only when a hit is
    /// detected are t0 and t1 updated with the corresponding entry
    /// and exit times along the INDEX ray!
    /// @param t0 If the return value > 0 this is the time of the
    /// first hit of an active tile or leaf.
    /// @param t1 If the return value > t0 this is the time of the
    /// first hit (> t0) of an inactive tile or exit point of the
    /// BBOX for the leaf nodes.
    /// @warning t0 and t1 are computed with repect to the ray represented in
    /// index space of the current grid, not world space!
    inline bool march(Real& t0, Real& t1)
    {
        const typename RayT::TimeSpan t = this->march();
        t.get(t0, t1);
        return t.valid();
    }

    inline void hits(std::vector<typename RayT::TimeSpan>& list)
    {
        mHDDA.hits(mRay, mAccessor, list);
    }

    /// @brief Return the floating-point index position along the
    /// current index ray at the specified time.
    inline Vec3R getIndexPos(Real time) const { return mRay(time); }

    /// @brief Return the floating-point world position along the
    /// current index ray at the specified time.
    inline Vec3R getWorldPos(Real time) const { return mGrid->indexToWorld(mRay(time)); }

    inline Real getWorldTime(Real time) const
    {
        return time*mGrid->transform().baseMap()->applyJacobian(mRay.dir()).length();
    }

    /// @brief Return a const reference to the input grid.
    const GridT& grid() const { return *mGrid; }

    /// @brief Return a const reference to the (potentially dilated)
    /// bool tree used to accelerate the ray marching.
    const TreeT& tree() const { return *mTree; }

    /// @brief Return a const reference to the BBOX of the grid
    const math::CoordBBox& bbox() const { return mBBox; }

    /// @brief Print bbox, statistics, memory usage and other information.
    /// @param os            a stream to which to write textual information
    /// @param verboseLevel  1: print bbox only; 2: include boolean tree
    ///                      statistics; 3: include memory usage
    void print(std::ostream& os = std::cout, int verboseLevel = 1)
    {
        if (verboseLevel>0) {
            os << "BBox: " << mBBox << std::endl;
            if (verboseLevel==2) {
                mTree->print(os, 1);
            } else if (verboseLevel>2) {
                mTree->print(os, 2);
            }
        }
    }

private:

    typedef typename tree::ValueAccessor<const TreeT> AccessorT;

    const bool      mIsMaster;
    TreeT*          mTree;
    const GridT*    mGrid;
    AccessorT       mAccessor;
    RayT            mRay;
    Real            mTmax;
    math::CoordBBox mBBox;
    math::VolumeHDDA<TreeT, RayType, NodeLevel> mHDDA;

};// VolumeRayIntersector


//////////////////////////////////////// LinearSearchImpl ////////////////////////////////////////


/// @brief Implements linear iterative search for an iso-value of
/// the level set along along the direction of the ray.
///
/// @note Since this class is used internally in
/// LevelSetRayIntersector (define above) and LevelSetHDDA (defined below)
/// client code should never interact directly with its API. This also
/// explains why we are not concerned with the fact that several of
/// its methods are unsafe to call unless roots were already detected.
///
/// @details It is approximate due to the limited number of iterations
/// which can can be defined with a template parameter. However the default value
/// has proven surprisingly accurate and fast. In fact more iterations
/// are not guaranteed to give significantly better results.
///
/// @warning Since the root-searching algorithm is approximate
/// (first-order) it is possible to miss intersections if the
/// iso-value is too close to the inside or outside of the narrow
/// band (typically a distance less then a voxel unit).
///
/// @warning Since this class internally stores a ValueAccessor it is NOT thread-safe,
/// so make sure to give each thread its own instance.  This of course also means that
/// the cost of allocating an instance should (if possible) be amortized over
/// as many ray intersections as possible.
template<typename GridT, int Iterations, typename RealT>
class LinearSearchImpl
{
public:
    typedef math::Ray<RealT>              RayT;
    typedef typename GridT::ValueType     ValueT;
    typedef typename GridT::ConstAccessor AccessorT;
    typedef math::BoxStencil<GridT>       StencilT;
    typedef typename StencilT::Vec3Type   Vec3T;

    /// @brief Constructor from a grid.
    /// @throw RunTimeError if the grid is empty.
    /// @throw ValueError if the isoValue is not inside the narrow-band.
    LinearSearchImpl(const GridT& grid, const ValueT& isoValue = zeroVal<ValueT>())
        : mStencil(grid),
          mIsoValue(isoValue),
          mMinValue(isoValue-2*grid.voxelSize()[0]),
          mMaxValue(isoValue+2*grid.voxelSize()[0])
      {
          if ( grid.empty() ) {
              OPENVDB_THROW(RuntimeError, "LinearSearchImpl does not supports empty grids");
          }
          if (mIsoValue<= -grid.background() ||
              mIsoValue>=  grid.background() ){
              OPENVDB_THROW(ValueError, "The iso-value must be inside the narrow-band!");
          }
          grid.tree().root().evalActiveBoundingBox(mBBox, /*visit individual voxels*/false);
      }

    /// @brief Return the iso-value used for ray-intersections
    const ValueT& getIsoValue() const { return mIsoValue; }

    /// @brief Return @c false the ray misses the bbox of the grid.
    /// @param iRay Ray represented in index space.
    /// @warning Call this method before the ray traversal starts.
    inline bool setIndexRay(const RayT& iRay)
    {
        mRay = iRay;
        return mRay.clip(mBBox);//did it hit the bbox
    }

    /// @brief Return @c false the ray misses the bbox of the grid.
    /// @param wRay Ray represented in world space.
    /// @warning Call this method before the ray traversal starts.
    inline bool setWorldRay(const RayT& wRay)
    {
        mRay = wRay.worldToIndex(mStencil.grid());
        return mRay.clip(mBBox);//did it hit the bbox
    }

    /// @brief Get the intersection point in index space.
    /// @param xyz The position in index space of the intersection.
    inline void getIndexPos(Vec3d& xyz) const { xyz = mRay(mTime); }

    /// @brief Get the intersection point in world space.
    /// @param xyz The position in world space of the intersection.
    inline void getWorldPos(Vec3d& xyz) const { xyz = mStencil.grid().indexToWorld(mRay(mTime)); }

    /// @brief Get the intersection point and normal in world space
    /// @param xyz The position in world space of the intersection.
    /// @param nml The surface normal in world space of the intersection.
    inline void getWorldPosAndNml(Vec3d& xyz, Vec3d& nml)
    {
        this->getIndexPos(xyz);
        mStencil.moveTo(xyz);
        nml = mStencil.gradient(xyz);
        nml.normalize();
        xyz = mStencil.grid().indexToWorld(xyz);
    }

    /// @brief Return the time of intersection along the index ray.
    inline RealT getIndexTime() const { return mTime; }

    /// @brief Return the time of intersection along the world ray.
    inline RealT getWorldTime() const
    {
        return mTime*mStencil.grid().transform().baseMap()->applyJacobian(mRay.dir()).length();
    }

private:

    /// @brief Initiate the local voxel intersection test.
    /// @warning Make sure to call this method before the local voxel intersection test.
    inline void init(RealT t0)
    {
        mT[0] = t0;
        mV[0] = this->interpValue(t0);
    }

    inline void setRange(RealT t0, RealT t1) { mRay.setTimes(t0, t1); }

    /// @brief Return a const reference to the ray.
    inline const RayT& ray() const { return mRay; }

    /// @brief Return true if a node of the the specified type exists at ijk.
    template <typename NodeT>
    inline bool hasNode(const Coord& ijk)
    {
        return mStencil.accessor().template probeConstNode<NodeT>(ijk) != NULL;
    }

    /// @brief Return @c true if an intersection is detected.
    /// @param ijk Grid coordinate of the node origin or voxel being tested.
    /// @param time Time along the index ray being tested.
    /// @warning Only if and intersection is detected is it safe to
    /// call getIndexPos, getWorldPos and getWorldPosAndNml!
    inline bool operator()(const Coord& ijk, RealT time)
    {
        ValueT V;
        if (mStencil.accessor().probeValue(ijk, V) &&//within narrow band
            V>mMinValue && V<mMaxValue) {// and close to iso-value?
            mT[1] = time;
            mV[1] = this->interpValue(time);
            if (math::ZeroCrossing(mV[0], mV[1])) {
                mTime = this->interpTime();
                OPENVDB_NO_UNREACHABLE_CODE_WARNING_BEGIN
                for (int n=0; Iterations>0 && n<Iterations; ++n) {//resolved at compile-time
                    V = this->interpValue(mTime);
                    const int m = math::ZeroCrossing(mV[0], V) ? 1 : 0;
                    mV[m] = V;
                    mT[m] = mTime;
                    mTime = this->interpTime();
                }
                OPENVDB_NO_UNREACHABLE_CODE_WARNING_END
                return true;
            }
            mT[0] = mT[1];
            mV[0] = mV[1];
        }
        return false;
    }

    inline RealT interpTime()
    {
        assert(math::isApproxLarger(mT[1], mT[0], 1e-6));
        return mT[0]+(mT[1]-mT[0])*mV[0]/(mV[0]-mV[1]);
    }

    inline RealT interpValue(RealT time)
    {
        const Vec3R pos = mRay(time);
        mStencil.moveTo(pos);
        return mStencil.interpolation(pos) - mIsoValue;
    }

    template<typename, int> friend struct math::LevelSetHDDA;

    RayT            mRay;
    StencilT        mStencil;
    RealT           mTime;//time of intersection
    ValueT          mV[2];
    RealT           mT[2];
    const ValueT    mIsoValue, mMinValue, mMaxValue;
    math::CoordBBox mBBox;
};// LinearSearchImpl

} // namespace tools
} // namespace OPENVDB_VERSION_NAME
} // namespace openvdb

#endif // OPENVDB_TOOLS_RAYINTERSECTOR_HAS_BEEN_INCLUDED

// Copyright (c) 2012-2013 DreamWorks Animation LLC
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )