Welcome to mirror list, hosted at ThFree Co, Russian Federation.

bellman_ford.h « lemon « lemon-1.3.1 « 3rd « quadriflow « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 310758ebb59f88d79f896a3b13e7f8cb8bacdec5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
/* -*- mode: C++; indent-tabs-mode: nil; -*-
 *
 * This file is a part of LEMON, a generic C++ optimization library.
 *
 * Copyright (C) 2003-2013
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
 *
 * Permission to use, modify and distribute this software is granted
 * provided that this copyright notice appears in all copies. For
 * precise terms see the accompanying LICENSE file.
 *
 * This software is provided "AS IS" with no warranty of any kind,
 * express or implied, and with no claim as to its suitability for any
 * purpose.
 *
 */

#ifndef LEMON_BELLMAN_FORD_H
#define LEMON_BELLMAN_FORD_H

/// \ingroup shortest_path
/// \file
/// \brief Bellman-Ford algorithm.

#include <lemon/list_graph.h>
#include <lemon/bits/path_dump.h>
#include <lemon/core.h>
#include <lemon/error.h>
#include <lemon/maps.h>
#include <lemon/path.h>

#include <limits>

namespace lemon {

  /// \brief Default OperationTraits for the BellmanFord algorithm class.
  ///
  /// This operation traits class defines all computational operations
  /// and constants that are used in the Bellman-Ford algorithm.
  /// The default implementation is based on the \c numeric_limits class.
  /// If the numeric type does not have infinity value, then the maximum
  /// value is used as extremal infinity value.
  template <
    typename V,
    bool has_inf = std::numeric_limits<V>::has_infinity>
  struct BellmanFordDefaultOperationTraits {
    /// \e
    typedef V Value;
    /// \brief Gives back the zero value of the type.
    static Value zero() {
      return static_cast<Value>(0);
    }
    /// \brief Gives back the positive infinity value of the type.
    static Value infinity() {
      return std::numeric_limits<Value>::infinity();
    }
    /// \brief Gives back the sum of the given two elements.
    static Value plus(const Value& left, const Value& right) {
      return left + right;
    }
    /// \brief Gives back \c true only if the first value is less than
    /// the second.
    static bool less(const Value& left, const Value& right) {
      return left < right;
    }
  };

  template <typename V>
  struct BellmanFordDefaultOperationTraits<V, false> {
    typedef V Value;
    static Value zero() {
      return static_cast<Value>(0);
    }
    static Value infinity() {
      return std::numeric_limits<Value>::max();
    }
    static Value plus(const Value& left, const Value& right) {
      if (left == infinity() || right == infinity()) return infinity();
      return left + right;
    }
    static bool less(const Value& left, const Value& right) {
      return left < right;
    }
  };

  /// \brief Default traits class of BellmanFord class.
  ///
  /// Default traits class of BellmanFord class.
  /// \param GR The type of the digraph.
  /// \param LEN The type of the length map.
  template<typename GR, typename LEN>
  struct BellmanFordDefaultTraits {
    /// The type of the digraph the algorithm runs on.
    typedef GR Digraph;

    /// \brief The type of the map that stores the arc lengths.
    ///
    /// The type of the map that stores the arc lengths.
    /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
    typedef LEN LengthMap;

    /// The type of the arc lengths.
    typedef typename LEN::Value Value;

    /// \brief Operation traits for Bellman-Ford algorithm.
    ///
    /// It defines the used operations and the infinity value for the
    /// given \c Value type.
    /// \see BellmanFordDefaultOperationTraits
    typedef BellmanFordDefaultOperationTraits<Value> OperationTraits;

    /// \brief The type of the map that stores the last arcs of the
    /// shortest paths.
    ///
    /// The type of the map that stores the last
    /// arcs of the shortest paths.
    /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
    typedef typename GR::template NodeMap<typename GR::Arc> PredMap;

    /// \brief Instantiates a \c PredMap.
    ///
    /// This function instantiates a \ref PredMap.
    /// \param g is the digraph to which we would like to define the
    /// \ref PredMap.
    static PredMap *createPredMap(const GR& g) {
      return new PredMap(g);
    }

    /// \brief The type of the map that stores the distances of the nodes.
    ///
    /// The type of the map that stores the distances of the nodes.
    /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
    typedef typename GR::template NodeMap<typename LEN::Value> DistMap;

    /// \brief Instantiates a \c DistMap.
    ///
    /// This function instantiates a \ref DistMap.
    /// \param g is the digraph to which we would like to define the
    /// \ref DistMap.
    static DistMap *createDistMap(const GR& g) {
      return new DistMap(g);
    }

  };

  /// \brief %BellmanFord algorithm class.
  ///
  /// \ingroup shortest_path
  /// This class provides an efficient implementation of the Bellman-Ford
  /// algorithm. The maximum time complexity of the algorithm is
  /// <tt>O(nm)</tt>.
  ///
  /// The Bellman-Ford algorithm solves the single-source shortest path
  /// problem when the arcs can have negative lengths, but the digraph
  /// should not contain directed cycles with negative total length.
  /// If all arc costs are non-negative, consider to use the Dijkstra
  /// algorithm instead, since it is more efficient.
  ///
  /// The arc lengths are passed to the algorithm using a
  /// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any
  /// kind of length. The type of the length values is determined by the
  /// \ref concepts::ReadMap::Value "Value" type of the length map.
  ///
  /// There is also a \ref bellmanFord() "function-type interface" for the
  /// Bellman-Ford algorithm, which is convenient in the simplier cases and
  /// it can be used easier.
  ///
  /// \tparam GR The type of the digraph the algorithm runs on.
  /// The default type is \ref ListDigraph.
  /// \tparam LEN A \ref concepts::ReadMap "readable" arc map that specifies
  /// the lengths of the arcs. The default map type is
  /// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
  /// \tparam TR The traits class that defines various types used by the
  /// algorithm. By default, it is \ref BellmanFordDefaultTraits
  /// "BellmanFordDefaultTraits<GR, LEN>".
  /// In most cases, this parameter should not be set directly,
  /// consider to use the named template parameters instead.
#ifdef DOXYGEN
  template <typename GR, typename LEN, typename TR>
#else
  template <typename GR=ListDigraph,
            typename LEN=typename GR::template ArcMap<int>,
            typename TR=BellmanFordDefaultTraits<GR,LEN> >
#endif
  class BellmanFord {
  public:

    ///The type of the underlying digraph.
    typedef typename TR::Digraph Digraph;

    /// \brief The type of the arc lengths.
    typedef typename TR::LengthMap::Value Value;
    /// \brief The type of the map that stores the arc lengths.
    typedef typename TR::LengthMap LengthMap;
    /// \brief The type of the map that stores the last
    /// arcs of the shortest paths.
    typedef typename TR::PredMap PredMap;
    /// \brief The type of the map that stores the distances of the nodes.
    typedef typename TR::DistMap DistMap;
    /// The type of the paths.
    typedef PredMapPath<Digraph, PredMap> Path;
    ///\brief The \ref lemon::BellmanFordDefaultOperationTraits
    /// "operation traits class" of the algorithm.
    typedef typename TR::OperationTraits OperationTraits;

    ///\brief The \ref lemon::BellmanFordDefaultTraits "traits class"
    ///of the algorithm.
    typedef TR Traits;

  private:

    typedef typename Digraph::Node Node;
    typedef typename Digraph::NodeIt NodeIt;
    typedef typename Digraph::Arc Arc;
    typedef typename Digraph::OutArcIt OutArcIt;

    // Pointer to the underlying digraph.
    const Digraph *_gr;
    // Pointer to the length map
    const LengthMap *_length;
    // Pointer to the map of predecessors arcs.
    PredMap *_pred;
    // Indicates if _pred is locally allocated (true) or not.
    bool _local_pred;
    // Pointer to the map of distances.
    DistMap *_dist;
    // Indicates if _dist is locally allocated (true) or not.
    bool _local_dist;

    typedef typename Digraph::template NodeMap<bool> MaskMap;
    MaskMap *_mask;

    std::vector<Node> _process;

    // Creates the maps if necessary.
    void create_maps() {
      if(!_pred) {
        _local_pred = true;
        _pred = Traits::createPredMap(*_gr);
      }
      if(!_dist) {
        _local_dist = true;
        _dist = Traits::createDistMap(*_gr);
      }
      if(!_mask) {
        _mask = new MaskMap(*_gr);
      }
    }

  public :

    typedef BellmanFord Create;

    /// \name Named Template Parameters

    ///@{

    template <class T>
    struct SetPredMapTraits : public Traits {
      typedef T PredMap;
      static PredMap *createPredMap(const Digraph&) {
        LEMON_ASSERT(false, "PredMap is not initialized");
        return 0; // ignore warnings
      }
    };

    /// \brief \ref named-templ-param "Named parameter" for setting
    /// \c PredMap type.
    ///
    /// \ref named-templ-param "Named parameter" for setting
    /// \c PredMap type.
    /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
    template <class T>
    struct SetPredMap
      : public BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > {
      typedef BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > Create;
    };

    template <class T>
    struct SetDistMapTraits : public Traits {
      typedef T DistMap;
      static DistMap *createDistMap(const Digraph&) {
        LEMON_ASSERT(false, "DistMap is not initialized");
        return 0; // ignore warnings
      }
    };

    /// \brief \ref named-templ-param "Named parameter" for setting
    /// \c DistMap type.
    ///
    /// \ref named-templ-param "Named parameter" for setting
    /// \c DistMap type.
    /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
    template <class T>
    struct SetDistMap
      : public BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > {
      typedef BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > Create;
    };

    template <class T>
    struct SetOperationTraitsTraits : public Traits {
      typedef T OperationTraits;
    };

    /// \brief \ref named-templ-param "Named parameter" for setting
    /// \c OperationTraits type.
    ///
    /// \ref named-templ-param "Named parameter" for setting
    /// \c OperationTraits type.
    /// For more information, see \ref BellmanFordDefaultOperationTraits.
    template <class T>
    struct SetOperationTraits
      : public BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > {
      typedef BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> >
      Create;
    };

    ///@}

  protected:

    BellmanFord() {}

  public:

    /// \brief Constructor.
    ///
    /// Constructor.
    /// \param g The digraph the algorithm runs on.
    /// \param length The length map used by the algorithm.
    BellmanFord(const Digraph& g, const LengthMap& length) :
      _gr(&g), _length(&length),
      _pred(0), _local_pred(false),
      _dist(0), _local_dist(false), _mask(0) {}

    ///Destructor.
    ~BellmanFord() {
      if(_local_pred) delete _pred;
      if(_local_dist) delete _dist;
      if(_mask) delete _mask;
    }

    /// \brief Sets the length map.
    ///
    /// Sets the length map.
    /// \return <tt>(*this)</tt>
    BellmanFord &lengthMap(const LengthMap &map) {
      _length = &map;
      return *this;
    }

    /// \brief Sets the map that stores the predecessor arcs.
    ///
    /// Sets the map that stores the predecessor arcs.
    /// If you don't use this function before calling \ref run()
    /// or \ref init(), an instance will be allocated automatically.
    /// The destructor deallocates this automatically allocated map,
    /// of course.
    /// \return <tt>(*this)</tt>
    BellmanFord &predMap(PredMap &map) {
      if(_local_pred) {
        delete _pred;
        _local_pred=false;
      }
      _pred = &map;
      return *this;
    }

    /// \brief Sets the map that stores the distances of the nodes.
    ///
    /// Sets the map that stores the distances of the nodes calculated
    /// by the algorithm.
    /// If you don't use this function before calling \ref run()
    /// or \ref init(), an instance will be allocated automatically.
    /// The destructor deallocates this automatically allocated map,
    /// of course.
    /// \return <tt>(*this)</tt>
    BellmanFord &distMap(DistMap &map) {
      if(_local_dist) {
        delete _dist;
        _local_dist=false;
      }
      _dist = &map;
      return *this;
    }

    /// \name Execution Control
    /// The simplest way to execute the Bellman-Ford algorithm is to use
    /// one of the member functions called \ref run().\n
    /// If you need better control on the execution, you have to call
    /// \ref init() first, then you can add several source nodes
    /// with \ref addSource(). Finally the actual path computation can be
    /// performed with \ref start(), \ref checkedStart() or
    /// \ref limitedStart().

    ///@{

    /// \brief Initializes the internal data structures.
    ///
    /// Initializes the internal data structures. The optional parameter
    /// is the initial distance of each node.
    void init(const Value value = OperationTraits::infinity()) {
      create_maps();
      for (NodeIt it(*_gr); it != INVALID; ++it) {
        _pred->set(it, INVALID);
        _dist->set(it, value);
      }
      _process.clear();
      if (OperationTraits::less(value, OperationTraits::infinity())) {
        for (NodeIt it(*_gr); it != INVALID; ++it) {
          _process.push_back(it);
          _mask->set(it, true);
        }
      } else {
        for (NodeIt it(*_gr); it != INVALID; ++it) {
          _mask->set(it, false);
        }
      }
    }

    /// \brief Adds a new source node.
    ///
    /// This function adds a new source node. The optional second parameter
    /// is the initial distance of the node.
    void addSource(Node source, Value dst = OperationTraits::zero()) {
      _dist->set(source, dst);
      if (!(*_mask)[source]) {
        _process.push_back(source);
        _mask->set(source, true);
      }
    }

    /// \brief Executes one round from the Bellman-Ford algorithm.
    ///
    /// If the algoritm calculated the distances in the previous round
    /// exactly for the paths of at most \c k arcs, then this function
    /// will calculate the distances exactly for the paths of at most
    /// <tt>k+1</tt> arcs. Performing \c k iterations using this function
    /// calculates the shortest path distances exactly for the paths
    /// consisting of at most \c k arcs.
    ///
    /// \warning The paths with limited arc number cannot be retrieved
    /// easily with \ref path() or \ref predArc() functions. If you also
    /// need the shortest paths and not only the distances, you should
    /// store the \ref predMap() "predecessor map" after each iteration
    /// and build the path manually.
    ///
    /// \return \c true when the algorithm have not found more shorter
    /// paths.
    ///
    /// \see ActiveIt
    bool processNextRound() {
      for (int i = 0; i < int(_process.size()); ++i) {
        _mask->set(_process[i], false);
      }
      std::vector<Node> nextProcess;
      std::vector<Value> values(_process.size());
      for (int i = 0; i < int(_process.size()); ++i) {
        values[i] = (*_dist)[_process[i]];
      }
      for (int i = 0; i < int(_process.size()); ++i) {
        for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) {
          Node target = _gr->target(it);
          Value relaxed = OperationTraits::plus(values[i], (*_length)[it]);
          if (OperationTraits::less(relaxed, (*_dist)[target])) {
            _pred->set(target, it);
            _dist->set(target, relaxed);
            if (!(*_mask)[target]) {
              _mask->set(target, true);
              nextProcess.push_back(target);
            }
          }
        }
      }
      _process.swap(nextProcess);
      return _process.empty();
    }

    /// \brief Executes one weak round from the Bellman-Ford algorithm.
    ///
    /// If the algorithm calculated the distances in the previous round
    /// at least for the paths of at most \c k arcs, then this function
    /// will calculate the distances at least for the paths of at most
    /// <tt>k+1</tt> arcs.
    /// This function does not make it possible to calculate the shortest
    /// path distances exactly for paths consisting of at most \c k arcs,
    /// this is why it is called weak round.
    ///
    /// \return \c true when the algorithm have not found more shorter
    /// paths.
    ///
    /// \see ActiveIt
    bool processNextWeakRound() {
      for (int i = 0; i < int(_process.size()); ++i) {
        _mask->set(_process[i], false);
      }
      std::vector<Node> nextProcess;
      for (int i = 0; i < int(_process.size()); ++i) {
        for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) {
          Node target = _gr->target(it);
          Value relaxed =
            OperationTraits::plus((*_dist)[_process[i]], (*_length)[it]);
          if (OperationTraits::less(relaxed, (*_dist)[target])) {
            _pred->set(target, it);
            _dist->set(target, relaxed);
            if (!(*_mask)[target]) {
              _mask->set(target, true);
              nextProcess.push_back(target);
            }
          }
        }
      }
      _process.swap(nextProcess);
      return _process.empty();
    }

    /// \brief Executes the algorithm.
    ///
    /// Executes the algorithm.
    ///
    /// This method runs the Bellman-Ford algorithm from the root node(s)
    /// in order to compute the shortest path to each node.
    ///
    /// The algorithm computes
    /// - the shortest path tree (forest),
    /// - the distance of each node from the root(s).
    ///
    /// \pre init() must be called and at least one root node should be
    /// added with addSource() before using this function.
    void start() {
      int num = countNodes(*_gr) - 1;
      for (int i = 0; i < num; ++i) {
        if (processNextWeakRound()) break;
      }
    }

    /// \brief Executes the algorithm and checks the negative cycles.
    ///
    /// Executes the algorithm and checks the negative cycles.
    ///
    /// This method runs the Bellman-Ford algorithm from the root node(s)
    /// in order to compute the shortest path to each node and also checks
    /// if the digraph contains cycles with negative total length.
    ///
    /// The algorithm computes
    /// - the shortest path tree (forest),
    /// - the distance of each node from the root(s).
    ///
    /// \return \c false if there is a negative cycle in the digraph.
    ///
    /// \pre init() must be called and at least one root node should be
    /// added with addSource() before using this function.
    bool checkedStart() {
      int num = countNodes(*_gr);
      for (int i = 0; i < num; ++i) {
        if (processNextWeakRound()) return true;
      }
      return _process.empty();
    }

    /// \brief Executes the algorithm with arc number limit.
    ///
    /// Executes the algorithm with arc number limit.
    ///
    /// This method runs the Bellman-Ford algorithm from the root node(s)
    /// in order to compute the shortest path distance for each node
    /// using only the paths consisting of at most \c num arcs.
    ///
    /// The algorithm computes
    /// - the limited distance of each node from the root(s),
    /// - the predecessor arc for each node.
    ///
    /// \warning The paths with limited arc number cannot be retrieved
    /// easily with \ref path() or \ref predArc() functions. If you also
    /// need the shortest paths and not only the distances, you should
    /// store the \ref predMap() "predecessor map" after each iteration
    /// and build the path manually.
    ///
    /// \pre init() must be called and at least one root node should be
    /// added with addSource() before using this function.
    void limitedStart(int num) {
      for (int i = 0; i < num; ++i) {
        if (processNextRound()) break;
      }
    }

    /// \brief Runs the algorithm from the given root node.
    ///
    /// This method runs the Bellman-Ford algorithm from the given root
    /// node \c s in order to compute the shortest path to each node.
    ///
    /// The algorithm computes
    /// - the shortest path tree (forest),
    /// - the distance of each node from the root(s).
    ///
    /// \note bf.run(s) is just a shortcut of the following code.
    /// \code
    ///   bf.init();
    ///   bf.addSource(s);
    ///   bf.start();
    /// \endcode
    void run(Node s) {
      init();
      addSource(s);
      start();
    }

    /// \brief Runs the algorithm from the given root node with arc
    /// number limit.
    ///
    /// This method runs the Bellman-Ford algorithm from the given root
    /// node \c s in order to compute the shortest path distance for each
    /// node using only the paths consisting of at most \c num arcs.
    ///
    /// The algorithm computes
    /// - the limited distance of each node from the root(s),
    /// - the predecessor arc for each node.
    ///
    /// \warning The paths with limited arc number cannot be retrieved
    /// easily with \ref path() or \ref predArc() functions. If you also
    /// need the shortest paths and not only the distances, you should
    /// store the \ref predMap() "predecessor map" after each iteration
    /// and build the path manually.
    ///
    /// \note bf.run(s, num) is just a shortcut of the following code.
    /// \code
    ///   bf.init();
    ///   bf.addSource(s);
    ///   bf.limitedStart(num);
    /// \endcode
    void run(Node s, int num) {
      init();
      addSource(s);
      limitedStart(num);
    }

    ///@}

    /// \brief LEMON iterator for getting the active nodes.
    ///
    /// This class provides a common style LEMON iterator that traverses
    /// the active nodes of the Bellman-Ford algorithm after the last
    /// phase. These nodes should be checked in the next phase to
    /// find augmenting arcs outgoing from them.
    class ActiveIt {
    public:

      /// \brief Constructor.
      ///
      /// Constructor for getting the active nodes of the given BellmanFord
      /// instance.
      ActiveIt(const BellmanFord& algorithm) : _algorithm(&algorithm)
      {
        _index = _algorithm->_process.size() - 1;
      }

      /// \brief Invalid constructor.
      ///
      /// Invalid constructor.
      ActiveIt(Invalid) : _algorithm(0), _index(-1) {}

      /// \brief Conversion to \c Node.
      ///
      /// Conversion to \c Node.
      operator Node() const {
        return _index >= 0 ? _algorithm->_process[_index] : INVALID;
      }

      /// \brief Increment operator.
      ///
      /// Increment operator.
      ActiveIt& operator++() {
        --_index;
        return *this;
      }

      bool operator==(const ActiveIt& it) const {
        return static_cast<Node>(*this) == static_cast<Node>(it);
      }
      bool operator!=(const ActiveIt& it) const {
        return static_cast<Node>(*this) != static_cast<Node>(it);
      }
      bool operator<(const ActiveIt& it) const {
        return static_cast<Node>(*this) < static_cast<Node>(it);
      }

    private:
      const BellmanFord* _algorithm;
      int _index;
    };

    /// \name Query Functions
    /// The result of the Bellman-Ford algorithm can be obtained using these
    /// functions.\n
    /// Either \ref run() or \ref init() should be called before using them.

    ///@{

    /// \brief The shortest path to the given node.
    ///
    /// Gives back the shortest path to the given node from the root(s).
    ///
    /// \warning \c t should be reached from the root(s).
    ///
    /// \pre Either \ref run() or \ref init() must be called before
    /// using this function.
    Path path(Node t) const
    {
      return Path(*_gr, *_pred, t);
    }

    /// \brief The distance of the given node from the root(s).
    ///
    /// Returns the distance of the given node from the root(s).
    ///
    /// \warning If node \c v is not reached from the root(s), then
    /// the return value of this function is undefined.
    ///
    /// \pre Either \ref run() or \ref init() must be called before
    /// using this function.
    Value dist(Node v) const { return (*_dist)[v]; }

    /// \brief Returns the 'previous arc' of the shortest path tree for
    /// the given node.
    ///
    /// This function returns the 'previous arc' of the shortest path
    /// tree for node \c v, i.e. it returns the last arc of a
    /// shortest path from a root to \c v. It is \c INVALID if \c v
    /// is not reached from the root(s) or if \c v is a root.
    ///
    /// The shortest path tree used here is equal to the shortest path
    /// tree used in \ref predNode() and \ref predMap().
    ///
    /// \pre Either \ref run() or \ref init() must be called before
    /// using this function.
    Arc predArc(Node v) const { return (*_pred)[v]; }

    /// \brief Returns the 'previous node' of the shortest path tree for
    /// the given node.
    ///
    /// This function returns the 'previous node' of the shortest path
    /// tree for node \c v, i.e. it returns the last but one node of
    /// a shortest path from a root to \c v. It is \c INVALID if \c v
    /// is not reached from the root(s) or if \c v is a root.
    ///
    /// The shortest path tree used here is equal to the shortest path
    /// tree used in \ref predArc() and \ref predMap().
    ///
    /// \pre Either \ref run() or \ref init() must be called before
    /// using this function.
    Node predNode(Node v) const {
      return (*_pred)[v] == INVALID ? INVALID : _gr->source((*_pred)[v]);
    }

    /// \brief Returns a const reference to the node map that stores the
    /// distances of the nodes.
    ///
    /// Returns a const reference to the node map that stores the distances
    /// of the nodes calculated by the algorithm.
    ///
    /// \pre Either \ref run() or \ref init() must be called before
    /// using this function.
    const DistMap &distMap() const { return *_dist;}

    /// \brief Returns a const reference to the node map that stores the
    /// predecessor arcs.
    ///
    /// Returns a const reference to the node map that stores the predecessor
    /// arcs, which form the shortest path tree (forest).
    ///
    /// \pre Either \ref run() or \ref init() must be called before
    /// using this function.
    const PredMap &predMap() const { return *_pred; }

    /// \brief Checks if a node is reached from the root(s).
    ///
    /// Returns \c true if \c v is reached from the root(s).
    ///
    /// \pre Either \ref run() or \ref init() must be called before
    /// using this function.
    bool reached(Node v) const {
      return (*_dist)[v] != OperationTraits::infinity();
    }

    /// \brief Gives back a negative cycle.
    ///
    /// This function gives back a directed cycle with negative total
    /// length if the algorithm has already found one.
    /// Otherwise it gives back an empty path.
    lemon::Path<Digraph> negativeCycle() const {
      typename Digraph::template NodeMap<int> state(*_gr, -1);
      lemon::Path<Digraph> cycle;
      for (int i = 0; i < int(_process.size()); ++i) {
        if (state[_process[i]] != -1) continue;
        for (Node v = _process[i]; (*_pred)[v] != INVALID;
             v = _gr->source((*_pred)[v])) {
          if (state[v] == i) {
            cycle.addFront((*_pred)[v]);
            for (Node u = _gr->source((*_pred)[v]); u != v;
                 u = _gr->source((*_pred)[u])) {
              cycle.addFront((*_pred)[u]);
            }
            return cycle;
          }
          else if (state[v] >= 0) {
            break;
          }
          state[v] = i;
        }
      }
      return cycle;
    }

    ///@}
  };

  /// \brief Default traits class of bellmanFord() function.
  ///
  /// Default traits class of bellmanFord() function.
  /// \tparam GR The type of the digraph.
  /// \tparam LEN The type of the length map.
  template <typename GR, typename LEN>
  struct BellmanFordWizardDefaultTraits {
    /// The type of the digraph the algorithm runs on.
    typedef GR Digraph;

    /// \brief The type of the map that stores the arc lengths.
    ///
    /// The type of the map that stores the arc lengths.
    /// It must meet the \ref concepts::ReadMap "ReadMap" concept.
    typedef LEN LengthMap;

    /// The type of the arc lengths.
    typedef typename LEN::Value Value;

    /// \brief Operation traits for Bellman-Ford algorithm.
    ///
    /// It defines the used operations and the infinity value for the
    /// given \c Value type.
    /// \see BellmanFordDefaultOperationTraits
    typedef BellmanFordDefaultOperationTraits<Value> OperationTraits;

    /// \brief The type of the map that stores the last
    /// arcs of the shortest paths.
    ///
    /// The type of the map that stores the last arcs of the shortest paths.
    /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
    typedef typename GR::template NodeMap<typename GR::Arc> PredMap;

    /// \brief Instantiates a \c PredMap.
    ///
    /// This function instantiates a \ref PredMap.
    /// \param g is the digraph to which we would like to define the
    /// \ref PredMap.
    static PredMap *createPredMap(const GR &g) {
      return new PredMap(g);
    }

    /// \brief The type of the map that stores the distances of the nodes.
    ///
    /// The type of the map that stores the distances of the nodes.
    /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
    typedef typename GR::template NodeMap<Value> DistMap;

    /// \brief Instantiates a \c DistMap.
    ///
    /// This function instantiates a \ref DistMap.
    /// \param g is the digraph to which we would like to define the
    /// \ref DistMap.
    static DistMap *createDistMap(const GR &g) {
      return new DistMap(g);
    }

    ///The type of the shortest paths.

    ///The type of the shortest paths.
    ///It must meet the \ref concepts::Path "Path" concept.
    typedef lemon::Path<Digraph> Path;
  };

  /// \brief Default traits class used by BellmanFordWizard.
  ///
  /// Default traits class used by BellmanFordWizard.
  /// \tparam GR The type of the digraph.
  /// \tparam LEN The type of the length map.
  template <typename GR, typename LEN>
  class BellmanFordWizardBase
    : public BellmanFordWizardDefaultTraits<GR, LEN> {

    typedef BellmanFordWizardDefaultTraits<GR, LEN> Base;
  protected:
    // Type of the nodes in the digraph.
    typedef typename Base::Digraph::Node Node;

    // Pointer to the underlying digraph.
    void *_graph;
    // Pointer to the length map
    void *_length;
    // Pointer to the map of predecessors arcs.
    void *_pred;
    // Pointer to the map of distances.
    void *_dist;
    //Pointer to the shortest path to the target node.
    void *_path;
    //Pointer to the distance of the target node.
    void *_di;

    public:
    /// Constructor.

    /// This constructor does not require parameters, it initiates
    /// all of the attributes to default values \c 0.
    BellmanFordWizardBase() :
      _graph(0), _length(0), _pred(0), _dist(0), _path(0), _di(0) {}

    /// Constructor.

    /// This constructor requires two parameters,
    /// others are initiated to \c 0.
    /// \param gr The digraph the algorithm runs on.
    /// \param len The length map.
    BellmanFordWizardBase(const GR& gr,
                          const LEN& len) :
      _graph(reinterpret_cast<void*>(const_cast<GR*>(&gr))),
      _length(reinterpret_cast<void*>(const_cast<LEN*>(&len))),
      _pred(0), _dist(0), _path(0), _di(0) {}

  };

  /// \brief Auxiliary class for the function-type interface of the
  /// \ref BellmanFord "Bellman-Ford" algorithm.
  ///
  /// This auxiliary class is created to implement the
  /// \ref bellmanFord() "function-type interface" of the
  /// \ref BellmanFord "Bellman-Ford" algorithm.
  /// It does not have own \ref run() method, it uses the
  /// functions and features of the plain \ref BellmanFord.
  ///
  /// This class should only be used through the \ref bellmanFord()
  /// function, which makes it easier to use the algorithm.
  ///
  /// \tparam TR The traits class that defines various types used by the
  /// algorithm.
  template<class TR>
  class BellmanFordWizard : public TR {
    typedef TR Base;

    typedef typename TR::Digraph Digraph;

    typedef typename Digraph::Node Node;
    typedef typename Digraph::NodeIt NodeIt;
    typedef typename Digraph::Arc Arc;
    typedef typename Digraph::OutArcIt ArcIt;

    typedef typename TR::LengthMap LengthMap;
    typedef typename LengthMap::Value Value;
    typedef typename TR::PredMap PredMap;
    typedef typename TR::DistMap DistMap;
    typedef typename TR::Path Path;

  public:
    /// Constructor.
    BellmanFordWizard() : TR() {}

    /// \brief Constructor that requires parameters.
    ///
    /// Constructor that requires parameters.
    /// These parameters will be the default values for the traits class.
    /// \param gr The digraph the algorithm runs on.
    /// \param len The length map.
    BellmanFordWizard(const Digraph& gr, const LengthMap& len)
      : TR(gr, len) {}

    /// \brief Copy constructor
    BellmanFordWizard(const TR &b) : TR(b) {}

    ~BellmanFordWizard() {}

    /// \brief Runs the Bellman-Ford algorithm from the given source node.
    ///
    /// This method runs the Bellman-Ford algorithm from the given source
    /// node in order to compute the shortest path to each node.
    void run(Node s) {
      BellmanFord<Digraph,LengthMap,TR>
        bf(*reinterpret_cast<const Digraph*>(Base::_graph),
           *reinterpret_cast<const LengthMap*>(Base::_length));
      if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
      if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
      bf.run(s);
    }

    /// \brief Runs the Bellman-Ford algorithm to find the shortest path
    /// between \c s and \c t.
    ///
    /// This method runs the Bellman-Ford algorithm from node \c s
    /// in order to compute the shortest path to node \c t.
    /// Actually, it computes the shortest path to each node, but using
    /// this function you can retrieve the distance and the shortest path
    /// for a single target node easier.
    ///
    /// \return \c true if \c t is reachable form \c s.
    bool run(Node s, Node t) {
      BellmanFord<Digraph,LengthMap,TR>
        bf(*reinterpret_cast<const Digraph*>(Base::_graph),
           *reinterpret_cast<const LengthMap*>(Base::_length));
      if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
      if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
      bf.run(s);
      if (Base::_path) *reinterpret_cast<Path*>(Base::_path) = bf.path(t);
      if (Base::_di) *reinterpret_cast<Value*>(Base::_di) = bf.dist(t);
      return bf.reached(t);
    }

    template<class T>
    struct SetPredMapBase : public Base {
      typedef T PredMap;
      static PredMap *createPredMap(const Digraph &) { return 0; };
      SetPredMapBase(const TR &b) : TR(b) {}
    };

    /// \brief \ref named-templ-param "Named parameter" for setting
    /// the predecessor map.
    ///
    /// \ref named-templ-param "Named parameter" for setting
    /// the map that stores the predecessor arcs of the nodes.
    template<class T>
    BellmanFordWizard<SetPredMapBase<T> > predMap(const T &t) {
      Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
      return BellmanFordWizard<SetPredMapBase<T> >(*this);
    }

    template<class T>
    struct SetDistMapBase : public Base {
      typedef T DistMap;
      static DistMap *createDistMap(const Digraph &) { return 0; };
      SetDistMapBase(const TR &b) : TR(b) {}
    };

    /// \brief \ref named-templ-param "Named parameter" for setting
    /// the distance map.
    ///
    /// \ref named-templ-param "Named parameter" for setting
    /// the map that stores the distances of the nodes calculated
    /// by the algorithm.
    template<class T>
    BellmanFordWizard<SetDistMapBase<T> > distMap(const T &t) {
      Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));
      return BellmanFordWizard<SetDistMapBase<T> >(*this);
    }

    template<class T>
    struct SetPathBase : public Base {
      typedef T Path;
      SetPathBase(const TR &b) : TR(b) {}
    };

    /// \brief \ref named-func-param "Named parameter" for getting
    /// the shortest path to the target node.
    ///
    /// \ref named-func-param "Named parameter" for getting
    /// the shortest path to the target node.
    template<class T>
    BellmanFordWizard<SetPathBase<T> > path(const T &t)
    {
      Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t));
      return BellmanFordWizard<SetPathBase<T> >(*this);
    }

    /// \brief \ref named-func-param "Named parameter" for getting
    /// the distance of the target node.
    ///
    /// \ref named-func-param "Named parameter" for getting
    /// the distance of the target node.
    BellmanFordWizard dist(const Value &d)
    {
      Base::_di=reinterpret_cast<void*>(const_cast<Value*>(&d));
      return *this;
    }

  };

  /// \brief Function type interface for the \ref BellmanFord "Bellman-Ford"
  /// algorithm.
  ///
  /// \ingroup shortest_path
  /// Function type interface for the \ref BellmanFord "Bellman-Ford"
  /// algorithm.
  ///
  /// This function also has several \ref named-templ-func-param
  /// "named parameters", they are declared as the members of class
  /// \ref BellmanFordWizard.
  /// The following examples show how to use these parameters.
  /// \code
  ///   // Compute shortest path from node s to each node
  ///   bellmanFord(g,length).predMap(preds).distMap(dists).run(s);
  ///
  ///   // Compute shortest path from s to t
  ///   bool reached = bellmanFord(g,length).path(p).dist(d).run(s,t);
  /// \endcode
  /// \warning Don't forget to put the \ref BellmanFordWizard::run() "run()"
  /// to the end of the parameter list.
  /// \sa BellmanFordWizard
  /// \sa BellmanFord
  template<typename GR, typename LEN>
  BellmanFordWizard<BellmanFordWizardBase<GR,LEN> >
  bellmanFord(const GR& digraph,
              const LEN& length)
  {
    return BellmanFordWizard<BellmanFordWizardBase<GR,LEN> >(digraph, length);
  }

} //END OF NAMESPACE LEMON

#endif