Welcome to mirror list, hosted at ThFree Co, Russian Federation.

bfs.h « lemon « lemon-1.3.1 « 3rd « quadriflow « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: e5f4e5c5a317e9db298f117ef29dfa6d2b5c3698 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
/* -*- mode: C++; indent-tabs-mode: nil; -*-
 *
 * This file is a part of LEMON, a generic C++ optimization library.
 *
 * Copyright (C) 2003-2013
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
 *
 * Permission to use, modify and distribute this software is granted
 * provided that this copyright notice appears in all copies. For
 * precise terms see the accompanying LICENSE file.
 *
 * This software is provided "AS IS" with no warranty of any kind,
 * express or implied, and with no claim as to its suitability for any
 * purpose.
 *
 */

#ifndef LEMON_BFS_H
#define LEMON_BFS_H

///\ingroup search
///\file
///\brief BFS algorithm.

#include <lemon/list_graph.h>
#include <lemon/bits/path_dump.h>
#include <lemon/core.h>
#include <lemon/error.h>
#include <lemon/maps.h>
#include <lemon/path.h>

namespace lemon {

  ///Default traits class of Bfs class.

  ///Default traits class of Bfs class.
  ///\tparam GR Digraph type.
  template<class GR>
  struct BfsDefaultTraits
  {
    ///The type of the digraph the algorithm runs on.
    typedef GR Digraph;

    ///\brief The type of the map that stores the predecessor
    ///arcs of the shortest paths.
    ///
    ///The type of the map that stores the predecessor
    ///arcs of the shortest paths.
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
    typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
    ///Instantiates a \c PredMap.

    ///This function instantiates a \ref PredMap.
    ///\param g is the digraph, to which we would like to define the
    ///\ref PredMap.
    static PredMap *createPredMap(const Digraph &g)
    {
      return new PredMap(g);
    }

    ///The type of the map that indicates which nodes are processed.

    ///The type of the map that indicates which nodes are processed.
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
    ///By default, it is a NullMap.
    typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
    ///Instantiates a \c ProcessedMap.

    ///This function instantiates a \ref ProcessedMap.
    ///\param g is the digraph, to which
    ///we would like to define the \ref ProcessedMap
#ifdef DOXYGEN
    static ProcessedMap *createProcessedMap(const Digraph &g)
#else
    static ProcessedMap *createProcessedMap(const Digraph &)
#endif
    {
      return new ProcessedMap();
    }

    ///The type of the map that indicates which nodes are reached.

    ///The type of the map that indicates which nodes are reached.
    ///It must conform to
    ///the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
    typedef typename Digraph::template NodeMap<bool> ReachedMap;
    ///Instantiates a \c ReachedMap.

    ///This function instantiates a \ref ReachedMap.
    ///\param g is the digraph, to which
    ///we would like to define the \ref ReachedMap.
    static ReachedMap *createReachedMap(const Digraph &g)
    {
      return new ReachedMap(g);
    }

    ///The type of the map that stores the distances of the nodes.

    ///The type of the map that stores the distances of the nodes.
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
    typedef typename Digraph::template NodeMap<int> DistMap;
    ///Instantiates a \c DistMap.

    ///This function instantiates a \ref DistMap.
    ///\param g is the digraph, to which we would like to define the
    ///\ref DistMap.
    static DistMap *createDistMap(const Digraph &g)
    {
      return new DistMap(g);
    }
  };

  ///%BFS algorithm class.

  ///\ingroup search
  ///This class provides an efficient implementation of the %BFS algorithm.
  ///
  ///There is also a \ref bfs() "function-type interface" for the BFS
  ///algorithm, which is convenient in the simplier cases and it can be
  ///used easier.
  ///
  ///\tparam GR The type of the digraph the algorithm runs on.
  ///The default type is \ref ListDigraph.
  ///\tparam TR The traits class that defines various types used by the
  ///algorithm. By default, it is \ref BfsDefaultTraits
  ///"BfsDefaultTraits<GR>".
  ///In most cases, this parameter should not be set directly,
  ///consider to use the named template parameters instead.
#ifdef DOXYGEN
  template <typename GR,
            typename TR>
#else
  template <typename GR=ListDigraph,
            typename TR=BfsDefaultTraits<GR> >
#endif
  class Bfs {
  public:

    ///The type of the digraph the algorithm runs on.
    typedef typename TR::Digraph Digraph;

    ///\brief The type of the map that stores the predecessor arcs of the
    ///shortest paths.
    typedef typename TR::PredMap PredMap;
    ///The type of the map that stores the distances of the nodes.
    typedef typename TR::DistMap DistMap;
    ///The type of the map that indicates which nodes are reached.
    typedef typename TR::ReachedMap ReachedMap;
    ///The type of the map that indicates which nodes are processed.
    typedef typename TR::ProcessedMap ProcessedMap;
    ///The type of the paths.
    typedef PredMapPath<Digraph, PredMap> Path;

    ///The \ref lemon::BfsDefaultTraits "traits class" of the algorithm.
    typedef TR Traits;

  private:

    typedef typename Digraph::Node Node;
    typedef typename Digraph::NodeIt NodeIt;
    typedef typename Digraph::Arc Arc;
    typedef typename Digraph::OutArcIt OutArcIt;

    //Pointer to the underlying digraph.
    const Digraph *G;
    //Pointer to the map of predecessor arcs.
    PredMap *_pred;
    //Indicates if _pred is locally allocated (true) or not.
    bool local_pred;
    //Pointer to the map of distances.
    DistMap *_dist;
    //Indicates if _dist is locally allocated (true) or not.
    bool local_dist;
    //Pointer to the map of reached status of the nodes.
    ReachedMap *_reached;
    //Indicates if _reached is locally allocated (true) or not.
    bool local_reached;
    //Pointer to the map of processed status of the nodes.
    ProcessedMap *_processed;
    //Indicates if _processed is locally allocated (true) or not.
    bool local_processed;

    std::vector<typename Digraph::Node> _queue;
    int _queue_head,_queue_tail,_queue_next_dist;
    int _curr_dist;

    //Creates the maps if necessary.
    void create_maps()
    {
      if(!_pred) {
        local_pred = true;
        _pred = Traits::createPredMap(*G);
      }
      if(!_dist) {
        local_dist = true;
        _dist = Traits::createDistMap(*G);
      }
      if(!_reached) {
        local_reached = true;
        _reached = Traits::createReachedMap(*G);
      }
      if(!_processed) {
        local_processed = true;
        _processed = Traits::createProcessedMap(*G);
      }
    }

  protected:

    Bfs() {}

  public:

    typedef Bfs Create;

    ///\name Named Template Parameters

    ///@{

    template <class T>
    struct SetPredMapTraits : public Traits {
      typedef T PredMap;
      static PredMap *createPredMap(const Digraph &)
      {
        LEMON_ASSERT(false, "PredMap is not initialized");
        return 0; // ignore warnings
      }
    };
    ///\brief \ref named-templ-param "Named parameter" for setting
    ///\c PredMap type.
    ///
    ///\ref named-templ-param "Named parameter" for setting
    ///\c PredMap type.
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
    template <class T>
    struct SetPredMap : public Bfs< Digraph, SetPredMapTraits<T> > {
      typedef Bfs< Digraph, SetPredMapTraits<T> > Create;
    };

    template <class T>
    struct SetDistMapTraits : public Traits {
      typedef T DistMap;
      static DistMap *createDistMap(const Digraph &)
      {
        LEMON_ASSERT(false, "DistMap is not initialized");
        return 0; // ignore warnings
      }
    };
    ///\brief \ref named-templ-param "Named parameter" for setting
    ///\c DistMap type.
    ///
    ///\ref named-templ-param "Named parameter" for setting
    ///\c DistMap type.
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
    template <class T>
    struct SetDistMap : public Bfs< Digraph, SetDistMapTraits<T> > {
      typedef Bfs< Digraph, SetDistMapTraits<T> > Create;
    };

    template <class T>
    struct SetReachedMapTraits : public Traits {
      typedef T ReachedMap;
      static ReachedMap *createReachedMap(const Digraph &)
      {
        LEMON_ASSERT(false, "ReachedMap is not initialized");
        return 0; // ignore warnings
      }
    };
    ///\brief \ref named-templ-param "Named parameter" for setting
    ///\c ReachedMap type.
    ///
    ///\ref named-templ-param "Named parameter" for setting
    ///\c ReachedMap type.
    ///It must conform to
    ///the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
    template <class T>
    struct SetReachedMap : public Bfs< Digraph, SetReachedMapTraits<T> > {
      typedef Bfs< Digraph, SetReachedMapTraits<T> > Create;
    };

    template <class T>
    struct SetProcessedMapTraits : public Traits {
      typedef T ProcessedMap;
      static ProcessedMap *createProcessedMap(const Digraph &)
      {
        LEMON_ASSERT(false, "ProcessedMap is not initialized");
        return 0; // ignore warnings
      }
    };
    ///\brief \ref named-templ-param "Named parameter" for setting
    ///\c ProcessedMap type.
    ///
    ///\ref named-templ-param "Named parameter" for setting
    ///\c ProcessedMap type.
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
    template <class T>
    struct SetProcessedMap : public Bfs< Digraph, SetProcessedMapTraits<T> > {
      typedef Bfs< Digraph, SetProcessedMapTraits<T> > Create;
    };

    struct SetStandardProcessedMapTraits : public Traits {
      typedef typename Digraph::template NodeMap<bool> ProcessedMap;
      static ProcessedMap *createProcessedMap(const Digraph &g)
      {
        return new ProcessedMap(g);
        return 0; // ignore warnings
      }
    };
    ///\brief \ref named-templ-param "Named parameter" for setting
    ///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
    ///
    ///\ref named-templ-param "Named parameter" for setting
    ///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
    ///If you don't set it explicitly, it will be automatically allocated.
    struct SetStandardProcessedMap :
      public Bfs< Digraph, SetStandardProcessedMapTraits > {
      typedef Bfs< Digraph, SetStandardProcessedMapTraits > Create;
    };

    ///@}

  public:

    ///Constructor.

    ///Constructor.
    ///\param g The digraph the algorithm runs on.
    Bfs(const Digraph &g) :
      G(&g),
      _pred(NULL), local_pred(false),
      _dist(NULL), local_dist(false),
      _reached(NULL), local_reached(false),
      _processed(NULL), local_processed(false)
    { }

    ///Destructor.
    ~Bfs()
    {
      if(local_pred) delete _pred;
      if(local_dist) delete _dist;
      if(local_reached) delete _reached;
      if(local_processed) delete _processed;
    }

    ///Sets the map that stores the predecessor arcs.

    ///Sets the map that stores the predecessor arcs.
    ///If you don't use this function before calling \ref run(Node) "run()"
    ///or \ref init(), an instance will be allocated automatically.
    ///The destructor deallocates this automatically allocated map,
    ///of course.
    ///\return <tt> (*this) </tt>
    Bfs &predMap(PredMap &m)
    {
      if(local_pred) {
        delete _pred;
        local_pred=false;
      }
      _pred = &m;
      return *this;
    }

    ///Sets the map that indicates which nodes are reached.

    ///Sets the map that indicates which nodes are reached.
    ///If you don't use this function before calling \ref run(Node) "run()"
    ///or \ref init(), an instance will be allocated automatically.
    ///The destructor deallocates this automatically allocated map,
    ///of course.
    ///\return <tt> (*this) </tt>
    Bfs &reachedMap(ReachedMap &m)
    {
      if(local_reached) {
        delete _reached;
        local_reached=false;
      }
      _reached = &m;
      return *this;
    }

    ///Sets the map that indicates which nodes are processed.

    ///Sets the map that indicates which nodes are processed.
    ///If you don't use this function before calling \ref run(Node) "run()"
    ///or \ref init(), an instance will be allocated automatically.
    ///The destructor deallocates this automatically allocated map,
    ///of course.
    ///\return <tt> (*this) </tt>
    Bfs &processedMap(ProcessedMap &m)
    {
      if(local_processed) {
        delete _processed;
        local_processed=false;
      }
      _processed = &m;
      return *this;
    }

    ///Sets the map that stores the distances of the nodes.

    ///Sets the map that stores the distances of the nodes calculated by
    ///the algorithm.
    ///If you don't use this function before calling \ref run(Node) "run()"
    ///or \ref init(), an instance will be allocated automatically.
    ///The destructor deallocates this automatically allocated map,
    ///of course.
    ///\return <tt> (*this) </tt>
    Bfs &distMap(DistMap &m)
    {
      if(local_dist) {
        delete _dist;
        local_dist=false;
      }
      _dist = &m;
      return *this;
    }

  public:

    ///\name Execution Control
    ///The simplest way to execute the BFS algorithm is to use one of the
    ///member functions called \ref run(Node) "run()".\n
    ///If you need better control on the execution, you have to call
    ///\ref init() first, then you can add several source nodes with
    ///\ref addSource(). Finally the actual path computation can be
    ///performed with one of the \ref start() functions.

    ///@{

    ///\brief Initializes the internal data structures.
    ///
    ///Initializes the internal data structures.
    void init()
    {
      create_maps();
      _queue.resize(countNodes(*G));
      _queue_head=_queue_tail=0;
      _curr_dist=1;
      for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
        _pred->set(u,INVALID);
        _reached->set(u,false);
        _processed->set(u,false);
      }
    }

    ///Adds a new source node.

    ///Adds a new source node to the set of nodes to be processed.
    ///
    void addSource(Node s)
    {
      if(!(*_reached)[s])
        {
          _reached->set(s,true);
          _pred->set(s,INVALID);
          _dist->set(s,0);
          _queue[_queue_head++]=s;
          _queue_next_dist=_queue_head;
        }
    }

    ///Processes the next node.

    ///Processes the next node.
    ///
    ///\return The processed node.
    ///
    ///\pre The queue must not be empty.
    Node processNextNode()
    {
      if(_queue_tail==_queue_next_dist) {
        _curr_dist++;
        _queue_next_dist=_queue_head;
      }
      Node n=_queue[_queue_tail++];
      _processed->set(n,true);
      Node m;
      for(OutArcIt e(*G,n);e!=INVALID;++e)
        if(!(*_reached)[m=G->target(e)]) {
          _queue[_queue_head++]=m;
          _reached->set(m,true);
          _pred->set(m,e);
          _dist->set(m,_curr_dist);
        }
      return n;
    }

    ///Processes the next node.

    ///Processes the next node and checks if the given target node
    ///is reached. If the target node is reachable from the processed
    ///node, then the \c reach parameter will be set to \c true.
    ///
    ///\param target The target node.
    ///\retval reach Indicates if the target node is reached.
    ///It should be initially \c false.
    ///
    ///\return The processed node.
    ///
    ///\pre The queue must not be empty.
    Node processNextNode(Node target, bool& reach)
    {
      if(_queue_tail==_queue_next_dist) {
        _curr_dist++;
        _queue_next_dist=_queue_head;
      }
      Node n=_queue[_queue_tail++];
      _processed->set(n,true);
      Node m;
      for(OutArcIt e(*G,n);e!=INVALID;++e)
        if(!(*_reached)[m=G->target(e)]) {
          _queue[_queue_head++]=m;
          _reached->set(m,true);
          _pred->set(m,e);
          _dist->set(m,_curr_dist);
          reach = reach || (target == m);
        }
      return n;
    }

    ///Processes the next node.

    ///Processes the next node and checks if at least one of reached
    ///nodes has \c true value in the \c nm node map. If one node
    ///with \c true value is reachable from the processed node, then the
    ///\c rnode parameter will be set to the first of such nodes.
    ///
    ///\param nm A \c bool (or convertible) node map that indicates the
    ///possible targets.
    ///\retval rnode The reached target node.
    ///It should be initially \c INVALID.
    ///
    ///\return The processed node.
    ///
    ///\pre The queue must not be empty.
    template<class NM>
    Node processNextNode(const NM& nm, Node& rnode)
    {
      if(_queue_tail==_queue_next_dist) {
        _curr_dist++;
        _queue_next_dist=_queue_head;
      }
      Node n=_queue[_queue_tail++];
      _processed->set(n,true);
      Node m;
      for(OutArcIt e(*G,n);e!=INVALID;++e)
        if(!(*_reached)[m=G->target(e)]) {
          _queue[_queue_head++]=m;
          _reached->set(m,true);
          _pred->set(m,e);
          _dist->set(m,_curr_dist);
          if (nm[m] && rnode == INVALID) rnode = m;
        }
      return n;
    }

    ///The next node to be processed.

    ///Returns the next node to be processed or \c INVALID if the queue
    ///is empty.
    Node nextNode() const
    {
      return _queue_tail<_queue_head?_queue[_queue_tail]:INVALID;
    }

    ///Returns \c false if there are nodes to be processed.

    ///Returns \c false if there are nodes to be processed
    ///in the queue.
    bool emptyQueue() const { return _queue_tail==_queue_head; }

    ///Returns the number of the nodes to be processed.

    ///Returns the number of the nodes to be processed
    ///in the queue.
    int queueSize() const { return _queue_head-_queue_tail; }

    ///Executes the algorithm.

    ///Executes the algorithm.
    ///
    ///This method runs the %BFS algorithm from the root node(s)
    ///in order to compute the shortest path to each node.
    ///
    ///The algorithm computes
    ///- the shortest path tree (forest),
    ///- the distance of each node from the root(s).
    ///
    ///\pre init() must be called and at least one root node should be
    ///added with addSource() before using this function.
    ///
    ///\note <tt>b.start()</tt> is just a shortcut of the following code.
    ///\code
    ///  while ( !b.emptyQueue() ) {
    ///    b.processNextNode();
    ///  }
    ///\endcode
    void start()
    {
      while ( !emptyQueue() ) processNextNode();
    }

    ///Executes the algorithm until the given target node is reached.

    ///Executes the algorithm until the given target node is reached.
    ///
    ///This method runs the %BFS algorithm from the root node(s)
    ///in order to compute the shortest path to \c t.
    ///
    ///The algorithm computes
    ///- the shortest path to \c t,
    ///- the distance of \c t from the root(s).
    ///
    ///\pre init() must be called and at least one root node should be
    ///added with addSource() before using this function.
    ///
    ///\note <tt>b.start(t)</tt> is just a shortcut of the following code.
    ///\code
    ///  bool reach = false;
    ///  while ( !b.emptyQueue() && !reach ) {
    ///    b.processNextNode(t, reach);
    ///  }
    ///\endcode
    void start(Node t)
    {
      bool reach = false;
      while ( !emptyQueue() && !reach ) processNextNode(t, reach);
    }

    ///Executes the algorithm until a condition is met.

    ///Executes the algorithm until a condition is met.
    ///
    ///This method runs the %BFS algorithm from the root node(s) in
    ///order to compute the shortest path to a node \c v with
    /// <tt>nm[v]</tt> true, if such a node can be found.
    ///
    ///\param nm A \c bool (or convertible) node map. The algorithm
    ///will stop when it reaches a node \c v with <tt>nm[v]</tt> true.
    ///
    ///\return The reached node \c v with <tt>nm[v]</tt> true or
    ///\c INVALID if no such node was found.
    ///
    ///\pre init() must be called and at least one root node should be
    ///added with addSource() before using this function.
    ///
    ///\note <tt>b.start(nm)</tt> is just a shortcut of the following code.
    ///\code
    ///  Node rnode = INVALID;
    ///  while ( !b.emptyQueue() && rnode == INVALID ) {
    ///    b.processNextNode(nm, rnode);
    ///  }
    ///  return rnode;
    ///\endcode
    template<class NodeBoolMap>
    Node start(const NodeBoolMap &nm)
    {
      Node rnode = INVALID;
      while ( !emptyQueue() && rnode == INVALID ) {
        processNextNode(nm, rnode);
      }
      return rnode;
    }

    ///Runs the algorithm from the given source node.

    ///This method runs the %BFS algorithm from node \c s
    ///in order to compute the shortest path to each node.
    ///
    ///The algorithm computes
    ///- the shortest path tree,
    ///- the distance of each node from the root.
    ///
    ///\note <tt>b.run(s)</tt> is just a shortcut of the following code.
    ///\code
    ///  b.init();
    ///  b.addSource(s);
    ///  b.start();
    ///\endcode
    void run(Node s) {
      init();
      addSource(s);
      start();
    }

    ///Finds the shortest path between \c s and \c t.

    ///This method runs the %BFS algorithm from node \c s
    ///in order to compute the shortest path to node \c t
    ///(it stops searching when \c t is processed).
    ///
    ///\return \c true if \c t is reachable form \c s.
    ///
    ///\note Apart from the return value, <tt>b.run(s,t)</tt> is just a
    ///shortcut of the following code.
    ///\code
    ///  b.init();
    ///  b.addSource(s);
    ///  b.start(t);
    ///\endcode
    bool run(Node s,Node t) {
      init();
      addSource(s);
      start(t);
      return reached(t);
    }

    ///Runs the algorithm to visit all nodes in the digraph.

    ///This method runs the %BFS algorithm in order to visit all nodes
    ///in the digraph.
    ///
    ///\note <tt>b.run(s)</tt> is just a shortcut of the following code.
    ///\code
    ///  b.init();
    ///  for (NodeIt n(gr); n != INVALID; ++n) {
    ///    if (!b.reached(n)) {
    ///      b.addSource(n);
    ///      b.start();
    ///    }
    ///  }
    ///\endcode
    void run() {
      init();
      for (NodeIt n(*G); n != INVALID; ++n) {
        if (!reached(n)) {
          addSource(n);
          start();
        }
      }
    }

    ///@}

    ///\name Query Functions
    ///The results of the BFS algorithm can be obtained using these
    ///functions.\n
    ///Either \ref run(Node) "run()" or \ref start() should be called
    ///before using them.

    ///@{

    ///The shortest path to the given node.

    ///Returns the shortest path to the given node from the root(s).
    ///
    ///\warning \c t should be reached from the root(s).
    ///
    ///\pre Either \ref run(Node) "run()" or \ref init()
    ///must be called before using this function.
    Path path(Node t) const { return Path(*G, *_pred, t); }

    ///The distance of the given node from the root(s).

    ///Returns the distance of the given node from the root(s).
    ///
    ///\warning If node \c v is not reached from the root(s), then
    ///the return value of this function is undefined.
    ///
    ///\pre Either \ref run(Node) "run()" or \ref init()
    ///must be called before using this function.
    int dist(Node v) const { return (*_dist)[v]; }

    ///\brief Returns the 'previous arc' of the shortest path tree for
    ///the given node.
    ///
    ///This function returns the 'previous arc' of the shortest path
    ///tree for the node \c v, i.e. it returns the last arc of a
    ///shortest path from a root to \c v. It is \c INVALID if \c v
    ///is not reached from the root(s) or if \c v is a root.
    ///
    ///The shortest path tree used here is equal to the shortest path
    ///tree used in \ref predNode() and \ref predMap().
    ///
    ///\pre Either \ref run(Node) "run()" or \ref init()
    ///must be called before using this function.
    Arc predArc(Node v) const { return (*_pred)[v];}

    ///\brief Returns the 'previous node' of the shortest path tree for
    ///the given node.
    ///
    ///This function returns the 'previous node' of the shortest path
    ///tree for the node \c v, i.e. it returns the last but one node
    ///of a shortest path from a root to \c v. It is \c INVALID
    ///if \c v is not reached from the root(s) or if \c v is a root.
    ///
    ///The shortest path tree used here is equal to the shortest path
    ///tree used in \ref predArc() and \ref predMap().
    ///
    ///\pre Either \ref run(Node) "run()" or \ref init()
    ///must be called before using this function.
    Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
                                  G->source((*_pred)[v]); }

    ///\brief Returns a const reference to the node map that stores the
    /// distances of the nodes.
    ///
    ///Returns a const reference to the node map that stores the distances
    ///of the nodes calculated by the algorithm.
    ///
    ///\pre Either \ref run(Node) "run()" or \ref init()
    ///must be called before using this function.
    const DistMap &distMap() const { return *_dist;}

    ///\brief Returns a const reference to the node map that stores the
    ///predecessor arcs.
    ///
    ///Returns a const reference to the node map that stores the predecessor
    ///arcs, which form the shortest path tree (forest).
    ///
    ///\pre Either \ref run(Node) "run()" or \ref init()
    ///must be called before using this function.
    const PredMap &predMap() const { return *_pred;}

    ///Checks if the given node is reached from the root(s).

    ///Returns \c true if \c v is reached from the root(s).
    ///
    ///\pre Either \ref run(Node) "run()" or \ref init()
    ///must be called before using this function.
    bool reached(Node v) const { return (*_reached)[v]; }

    ///@}
  };

  ///Default traits class of bfs() function.

  ///Default traits class of bfs() function.
  ///\tparam GR Digraph type.
  template<class GR>
  struct BfsWizardDefaultTraits
  {
    ///The type of the digraph the algorithm runs on.
    typedef GR Digraph;

    ///\brief The type of the map that stores the predecessor
    ///arcs of the shortest paths.
    ///
    ///The type of the map that stores the predecessor
    ///arcs of the shortest paths.
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
    typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
    ///Instantiates a PredMap.

    ///This function instantiates a PredMap.
    ///\param g is the digraph, to which we would like to define the
    ///PredMap.
    static PredMap *createPredMap(const Digraph &g)
    {
      return new PredMap(g);
    }

    ///The type of the map that indicates which nodes are processed.

    ///The type of the map that indicates which nodes are processed.
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
    ///By default, it is a NullMap.
    typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
    ///Instantiates a ProcessedMap.

    ///This function instantiates a ProcessedMap.
    ///\param g is the digraph, to which
    ///we would like to define the ProcessedMap.
#ifdef DOXYGEN
    static ProcessedMap *createProcessedMap(const Digraph &g)
#else
    static ProcessedMap *createProcessedMap(const Digraph &)
#endif
    {
      return new ProcessedMap();
    }

    ///The type of the map that indicates which nodes are reached.

    ///The type of the map that indicates which nodes are reached.
    ///It must conform to
    ///the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
    typedef typename Digraph::template NodeMap<bool> ReachedMap;
    ///Instantiates a ReachedMap.

    ///This function instantiates a ReachedMap.
    ///\param g is the digraph, to which
    ///we would like to define the ReachedMap.
    static ReachedMap *createReachedMap(const Digraph &g)
    {
      return new ReachedMap(g);
    }

    ///The type of the map that stores the distances of the nodes.

    ///The type of the map that stores the distances of the nodes.
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
    typedef typename Digraph::template NodeMap<int> DistMap;
    ///Instantiates a DistMap.

    ///This function instantiates a DistMap.
    ///\param g is the digraph, to which we would like to define
    ///the DistMap
    static DistMap *createDistMap(const Digraph &g)
    {
      return new DistMap(g);
    }

    ///The type of the shortest paths.

    ///The type of the shortest paths.
    ///It must conform to the \ref concepts::Path "Path" concept.
    typedef lemon::Path<Digraph> Path;
  };

  /// Default traits class used by BfsWizard

  /// Default traits class used by BfsWizard.
  /// \tparam GR The type of the digraph.
  template<class GR>
  class BfsWizardBase : public BfsWizardDefaultTraits<GR>
  {

    typedef BfsWizardDefaultTraits<GR> Base;
  protected:
    //The type of the nodes in the digraph.
    typedef typename Base::Digraph::Node Node;

    //Pointer to the digraph the algorithm runs on.
    void *_g;
    //Pointer to the map of reached nodes.
    void *_reached;
    //Pointer to the map of processed nodes.
    void *_processed;
    //Pointer to the map of predecessors arcs.
    void *_pred;
    //Pointer to the map of distances.
    void *_dist;
    //Pointer to the shortest path to the target node.
    void *_path;
    //Pointer to the distance of the target node.
    int *_di;

    public:
    /// Constructor.

    /// This constructor does not require parameters, it initiates
    /// all of the attributes to \c 0.
    BfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0),
                      _dist(0), _path(0), _di(0) {}

    /// Constructor.

    /// This constructor requires one parameter,
    /// others are initiated to \c 0.
    /// \param g The digraph the algorithm runs on.
    BfsWizardBase(const GR &g) :
      _g(reinterpret_cast<void*>(const_cast<GR*>(&g))),
      _reached(0), _processed(0), _pred(0), _dist(0),  _path(0), _di(0) {}

  };

  /// Auxiliary class for the function-type interface of BFS algorithm.

  /// This auxiliary class is created to implement the
  /// \ref bfs() "function-type interface" of \ref Bfs algorithm.
  /// It does not have own \ref run(Node) "run()" method, it uses the
  /// functions and features of the plain \ref Bfs.
  ///
  /// This class should only be used through the \ref bfs() function,
  /// which makes it easier to use the algorithm.
  ///
  /// \tparam TR The traits class that defines various types used by the
  /// algorithm.
  template<class TR>
  class BfsWizard : public TR
  {
    typedef TR Base;

    typedef typename TR::Digraph Digraph;

    typedef typename Digraph::Node Node;
    typedef typename Digraph::NodeIt NodeIt;
    typedef typename Digraph::Arc Arc;
    typedef typename Digraph::OutArcIt OutArcIt;

    typedef typename TR::PredMap PredMap;
    typedef typename TR::DistMap DistMap;
    typedef typename TR::ReachedMap ReachedMap;
    typedef typename TR::ProcessedMap ProcessedMap;
    typedef typename TR::Path Path;

  public:

    /// Constructor.
    BfsWizard() : TR() {}

    /// Constructor that requires parameters.

    /// Constructor that requires parameters.
    /// These parameters will be the default values for the traits class.
    /// \param g The digraph the algorithm runs on.
    BfsWizard(const Digraph &g) :
      TR(g) {}

    ///Copy constructor
    BfsWizard(const TR &b) : TR(b) {}

    ~BfsWizard() {}

    ///Runs BFS algorithm from the given source node.

    ///This method runs BFS algorithm from node \c s
    ///in order to compute the shortest path to each node.
    void run(Node s)
    {
      Bfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g));
      if (Base::_pred)
        alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
      if (Base::_dist)
        alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
      if (Base::_reached)
        alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached));
      if (Base::_processed)
        alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
      if (s!=INVALID)
        alg.run(s);
      else
        alg.run();
    }

    ///Finds the shortest path between \c s and \c t.

    ///This method runs BFS algorithm from node \c s
    ///in order to compute the shortest path to node \c t
    ///(it stops searching when \c t is processed).
    ///
    ///\return \c true if \c t is reachable form \c s.
    bool run(Node s, Node t)
    {
      Bfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g));
      if (Base::_pred)
        alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
      if (Base::_dist)
        alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
      if (Base::_reached)
        alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached));
      if (Base::_processed)
        alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
      alg.run(s,t);
      if (Base::_path)
        *reinterpret_cast<Path*>(Base::_path) = alg.path(t);
      if (Base::_di)
        *Base::_di = alg.dist(t);
      return alg.reached(t);
    }

    ///Runs BFS algorithm to visit all nodes in the digraph.

    ///This method runs BFS algorithm in order to visit all nodes
    ///in the digraph.
    void run()
    {
      run(INVALID);
    }

    template<class T>
    struct SetPredMapBase : public Base {
      typedef T PredMap;
      static PredMap *createPredMap(const Digraph &) { return 0; };
      SetPredMapBase(const TR &b) : TR(b) {}
    };

    ///\brief \ref named-templ-param "Named parameter" for setting
    ///the predecessor map.
    ///
    ///\ref named-templ-param "Named parameter" function for setting
    ///the map that stores the predecessor arcs of the nodes.
    template<class T>
    BfsWizard<SetPredMapBase<T> > predMap(const T &t)
    {
      Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
      return BfsWizard<SetPredMapBase<T> >(*this);
    }

    template<class T>
    struct SetReachedMapBase : public Base {
      typedef T ReachedMap;
      static ReachedMap *createReachedMap(const Digraph &) { return 0; };
      SetReachedMapBase(const TR &b) : TR(b) {}
    };

    ///\brief \ref named-templ-param "Named parameter" for setting
    ///the reached map.
    ///
    ///\ref named-templ-param "Named parameter" function for setting
    ///the map that indicates which nodes are reached.
    template<class T>
    BfsWizard<SetReachedMapBase<T> > reachedMap(const T &t)
    {
      Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t));
      return BfsWizard<SetReachedMapBase<T> >(*this);
    }

    template<class T>
    struct SetDistMapBase : public Base {
      typedef T DistMap;
      static DistMap *createDistMap(const Digraph &) { return 0; };
      SetDistMapBase(const TR &b) : TR(b) {}
    };

    ///\brief \ref named-templ-param "Named parameter" for setting
    ///the distance map.
    ///
    ///\ref named-templ-param "Named parameter" function for setting
    ///the map that stores the distances of the nodes calculated
    ///by the algorithm.
    template<class T>
    BfsWizard<SetDistMapBase<T> > distMap(const T &t)
    {
      Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));
      return BfsWizard<SetDistMapBase<T> >(*this);
    }

    template<class T>
    struct SetProcessedMapBase : public Base {
      typedef T ProcessedMap;
      static ProcessedMap *createProcessedMap(const Digraph &) { return 0; };
      SetProcessedMapBase(const TR &b) : TR(b) {}
    };

    ///\brief \ref named-func-param "Named parameter" for setting
    ///the processed map.
    ///
    ///\ref named-templ-param "Named parameter" function for setting
    ///the map that indicates which nodes are processed.
    template<class T>
    BfsWizard<SetProcessedMapBase<T> > processedMap(const T &t)
    {
      Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t));
      return BfsWizard<SetProcessedMapBase<T> >(*this);
    }

    template<class T>
    struct SetPathBase : public Base {
      typedef T Path;
      SetPathBase(const TR &b) : TR(b) {}
    };
    ///\brief \ref named-func-param "Named parameter"
    ///for getting the shortest path to the target node.
    ///
    ///\ref named-func-param "Named parameter"
    ///for getting the shortest path to the target node.
    template<class T>
    BfsWizard<SetPathBase<T> > path(const T &t)
    {
      Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t));
      return BfsWizard<SetPathBase<T> >(*this);
    }

    ///\brief \ref named-func-param "Named parameter"
    ///for getting the distance of the target node.
    ///
    ///\ref named-func-param "Named parameter"
    ///for getting the distance of the target node.
    BfsWizard dist(const int &d)
    {
      Base::_di=const_cast<int*>(&d);
      return *this;
    }

  };

  ///Function-type interface for BFS algorithm.

  /// \ingroup search
  ///Function-type interface for BFS algorithm.
  ///
  ///This function also has several \ref named-func-param "named parameters",
  ///they are declared as the members of class \ref BfsWizard.
  ///The following examples show how to use these parameters.
  ///\code
  ///  // Compute shortest path from node s to each node
  ///  bfs(g).predMap(preds).distMap(dists).run(s);
  ///
  ///  // Compute shortest path from s to t
  ///  bool reached = bfs(g).path(p).dist(d).run(s,t);
  ///\endcode
  ///\warning Don't forget to put the \ref BfsWizard::run(Node) "run()"
  ///to the end of the parameter list.
  ///\sa BfsWizard
  ///\sa Bfs
  template<class GR>
  BfsWizard<BfsWizardBase<GR> >
  bfs(const GR &digraph)
  {
    return BfsWizard<BfsWizardBase<GR> >(digraph);
  }

#ifdef DOXYGEN
  /// \brief Visitor class for BFS.
  ///
  /// This class defines the interface of the BfsVisit events, and
  /// it could be the base of a real visitor class.
  template <typename GR>
  struct BfsVisitor {
    typedef GR Digraph;
    typedef typename Digraph::Arc Arc;
    typedef typename Digraph::Node Node;
    /// \brief Called for the source node(s) of the BFS.
    ///
    /// This function is called for the source node(s) of the BFS.
    void start(const Node& node) {}
    /// \brief Called when a node is reached first time.
    ///
    /// This function is called when a node is reached first time.
    void reach(const Node& node) {}
    /// \brief Called when a node is processed.
    ///
    /// This function is called when a node is processed.
    void process(const Node& node) {}
    /// \brief Called when an arc reaches a new node.
    ///
    /// This function is called when the BFS finds an arc whose target node
    /// is not reached yet.
    void discover(const Arc& arc) {}
    /// \brief Called when an arc is examined but its target node is
    /// already discovered.
    ///
    /// This function is called when an arc is examined but its target node is
    /// already discovered.
    void examine(const Arc& arc) {}
  };
#else
  template <typename GR>
  struct BfsVisitor {
    typedef GR Digraph;
    typedef typename Digraph::Arc Arc;
    typedef typename Digraph::Node Node;
    void start(const Node&) {}
    void reach(const Node&) {}
    void process(const Node&) {}
    void discover(const Arc&) {}
    void examine(const Arc&) {}

    template <typename _Visitor>
    struct Constraints {
      void constraints() {
        Arc arc;
        Node node;
        visitor.start(node);
        visitor.reach(node);
        visitor.process(node);
        visitor.discover(arc);
        visitor.examine(arc);
      }
      _Visitor& visitor;
      Constraints() {}
    };
  };
#endif

  /// \brief Default traits class of BfsVisit class.
  ///
  /// Default traits class of BfsVisit class.
  /// \tparam GR The type of the digraph the algorithm runs on.
  template<class GR>
  struct BfsVisitDefaultTraits {

    /// \brief The type of the digraph the algorithm runs on.
    typedef GR Digraph;

    /// \brief The type of the map that indicates which nodes are reached.
    ///
    /// The type of the map that indicates which nodes are reached.
    /// It must conform to
    ///the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
    typedef typename Digraph::template NodeMap<bool> ReachedMap;

    /// \brief Instantiates a ReachedMap.
    ///
    /// This function instantiates a ReachedMap.
    /// \param digraph is the digraph, to which
    /// we would like to define the ReachedMap.
    static ReachedMap *createReachedMap(const Digraph &digraph) {
      return new ReachedMap(digraph);
    }

  };

  /// \ingroup search
  ///
  /// \brief BFS algorithm class with visitor interface.
  ///
  /// This class provides an efficient implementation of the BFS algorithm
  /// with visitor interface.
  ///
  /// The BfsVisit class provides an alternative interface to the Bfs
  /// class. It works with callback mechanism, the BfsVisit object calls
  /// the member functions of the \c Visitor class on every BFS event.
  ///
  /// This interface of the BFS algorithm should be used in special cases
  /// when extra actions have to be performed in connection with certain
  /// events of the BFS algorithm. Otherwise consider to use Bfs or bfs()
  /// instead.
  ///
  /// \tparam GR The type of the digraph the algorithm runs on.
  /// The default type is \ref ListDigraph.
  /// The value of GR is not used directly by \ref BfsVisit,
  /// it is only passed to \ref BfsVisitDefaultTraits.
  /// \tparam VS The Visitor type that is used by the algorithm.
  /// \ref BfsVisitor "BfsVisitor<GR>" is an empty visitor, which
  /// does not observe the BFS events. If you want to observe the BFS
  /// events, you should implement your own visitor class.
  /// \tparam TR The traits class that defines various types used by the
  /// algorithm. By default, it is \ref BfsVisitDefaultTraits
  /// "BfsVisitDefaultTraits<GR>".
  /// In most cases, this parameter should not be set directly,
  /// consider to use the named template parameters instead.
#ifdef DOXYGEN
  template <typename GR, typename VS, typename TR>
#else
  template <typename GR = ListDigraph,
            typename VS = BfsVisitor<GR>,
            typename TR = BfsVisitDefaultTraits<GR> >
#endif
  class BfsVisit {
  public:

    ///The traits class.
    typedef TR Traits;

    ///The type of the digraph the algorithm runs on.
    typedef typename Traits::Digraph Digraph;

    ///The visitor type used by the algorithm.
    typedef VS Visitor;

    ///The type of the map that indicates which nodes are reached.
    typedef typename Traits::ReachedMap ReachedMap;

  private:

    typedef typename Digraph::Node Node;
    typedef typename Digraph::NodeIt NodeIt;
    typedef typename Digraph::Arc Arc;
    typedef typename Digraph::OutArcIt OutArcIt;

    //Pointer to the underlying digraph.
    const Digraph *_digraph;
    //Pointer to the visitor object.
    Visitor *_visitor;
    //Pointer to the map of reached status of the nodes.
    ReachedMap *_reached;
    //Indicates if _reached is locally allocated (true) or not.
    bool local_reached;

    std::vector<typename Digraph::Node> _list;
    int _list_front, _list_back;

    //Creates the maps if necessary.
    void create_maps() {
      if(!_reached) {
        local_reached = true;
        _reached = Traits::createReachedMap(*_digraph);
      }
    }

  protected:

    BfsVisit() {}

  public:

    typedef BfsVisit Create;

    /// \name Named Template Parameters

    ///@{
    template <class T>
    struct SetReachedMapTraits : public Traits {
      typedef T ReachedMap;
      static ReachedMap *createReachedMap(const Digraph &digraph) {
        LEMON_ASSERT(false, "ReachedMap is not initialized");
        return 0; // ignore warnings
      }
    };
    /// \brief \ref named-templ-param "Named parameter" for setting
    /// ReachedMap type.
    ///
    /// \ref named-templ-param "Named parameter" for setting ReachedMap type.
    template <class T>
    struct SetReachedMap : public BfsVisit< Digraph, Visitor,
                                            SetReachedMapTraits<T> > {
      typedef BfsVisit< Digraph, Visitor, SetReachedMapTraits<T> > Create;
    };
    ///@}

  public:

    /// \brief Constructor.
    ///
    /// Constructor.
    ///
    /// \param digraph The digraph the algorithm runs on.
    /// \param visitor The visitor object of the algorithm.
    BfsVisit(const Digraph& digraph, Visitor& visitor)
      : _digraph(&digraph), _visitor(&visitor),
        _reached(0), local_reached(false) {}

    /// \brief Destructor.
    ~BfsVisit() {
      if(local_reached) delete _reached;
    }

    /// \brief Sets the map that indicates which nodes are reached.
    ///
    /// Sets the map that indicates which nodes are reached.
    /// If you don't use this function before calling \ref run(Node) "run()"
    /// or \ref init(), an instance will be allocated automatically.
    /// The destructor deallocates this automatically allocated map,
    /// of course.
    /// \return <tt> (*this) </tt>
    BfsVisit &reachedMap(ReachedMap &m) {
      if(local_reached) {
        delete _reached;
        local_reached = false;
      }
      _reached = &m;
      return *this;
    }

  public:

    /// \name Execution Control
    /// The simplest way to execute the BFS algorithm is to use one of the
    /// member functions called \ref run(Node) "run()".\n
    /// If you need better control on the execution, you have to call
    /// \ref init() first, then you can add several source nodes with
    /// \ref addSource(). Finally the actual path computation can be
    /// performed with one of the \ref start() functions.

    /// @{

    /// \brief Initializes the internal data structures.
    ///
    /// Initializes the internal data structures.
    void init() {
      create_maps();
      _list.resize(countNodes(*_digraph));
      _list_front = _list_back = -1;
      for (NodeIt u(*_digraph) ; u != INVALID ; ++u) {
        _reached->set(u, false);
      }
    }

    /// \brief Adds a new source node.
    ///
    /// Adds a new source node to the set of nodes to be processed.
    void addSource(Node s) {
      if(!(*_reached)[s]) {
          _reached->set(s,true);
          _visitor->start(s);
          _visitor->reach(s);
          _list[++_list_back] = s;
        }
    }

    /// \brief Processes the next node.
    ///
    /// Processes the next node.
    ///
    /// \return The processed node.
    ///
    /// \pre The queue must not be empty.
    Node processNextNode() {
      Node n = _list[++_list_front];
      _visitor->process(n);
      Arc e;
      for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) {
        Node m = _digraph->target(e);
        if (!(*_reached)[m]) {
          _visitor->discover(e);
          _visitor->reach(m);
          _reached->set(m, true);
          _list[++_list_back] = m;
        } else {
          _visitor->examine(e);
        }
      }
      return n;
    }

    /// \brief Processes the next node.
    ///
    /// Processes the next node and checks if the given target node
    /// is reached. If the target node is reachable from the processed
    /// node, then the \c reach parameter will be set to \c true.
    ///
    /// \param target The target node.
    /// \retval reach Indicates if the target node is reached.
    /// It should be initially \c false.
    ///
    /// \return The processed node.
    ///
    /// \pre The queue must not be empty.
    Node processNextNode(Node target, bool& reach) {
      Node n = _list[++_list_front];
      _visitor->process(n);
      Arc e;
      for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) {
        Node m = _digraph->target(e);
        if (!(*_reached)[m]) {
          _visitor->discover(e);
          _visitor->reach(m);
          _reached->set(m, true);
          _list[++_list_back] = m;
          reach = reach || (target == m);
        } else {
          _visitor->examine(e);
        }
      }
      return n;
    }

    /// \brief Processes the next node.
    ///
    /// Processes the next node and checks if at least one of reached
    /// nodes has \c true value in the \c nm node map. If one node
    /// with \c true value is reachable from the processed node, then the
    /// \c rnode parameter will be set to the first of such nodes.
    ///
    /// \param nm A \c bool (or convertible) node map that indicates the
    /// possible targets.
    /// \retval rnode The reached target node.
    /// It should be initially \c INVALID.
    ///
    /// \return The processed node.
    ///
    /// \pre The queue must not be empty.
    template <typename NM>
    Node processNextNode(const NM& nm, Node& rnode) {
      Node n = _list[++_list_front];
      _visitor->process(n);
      Arc e;
      for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) {
        Node m = _digraph->target(e);
        if (!(*_reached)[m]) {
          _visitor->discover(e);
          _visitor->reach(m);
          _reached->set(m, true);
          _list[++_list_back] = m;
          if (nm[m] && rnode == INVALID) rnode = m;
        } else {
          _visitor->examine(e);
        }
      }
      return n;
    }

    /// \brief The next node to be processed.
    ///
    /// Returns the next node to be processed or \c INVALID if the queue
    /// is empty.
    Node nextNode() const {
      return _list_front != _list_back ? _list[_list_front + 1] : INVALID;
    }

    /// \brief Returns \c false if there are nodes
    /// to be processed.
    ///
    /// Returns \c false if there are nodes
    /// to be processed in the queue.
    bool emptyQueue() const { return _list_front == _list_back; }

    /// \brief Returns the number of the nodes to be processed.
    ///
    /// Returns the number of the nodes to be processed in the queue.
    int queueSize() const { return _list_back - _list_front; }

    /// \brief Executes the algorithm.
    ///
    /// Executes the algorithm.
    ///
    /// This method runs the %BFS algorithm from the root node(s)
    /// in order to compute the shortest path to each node.
    ///
    /// The algorithm computes
    /// - the shortest path tree (forest),
    /// - the distance of each node from the root(s).
    ///
    /// \pre init() must be called and at least one root node should be added
    /// with addSource() before using this function.
    ///
    /// \note <tt>b.start()</tt> is just a shortcut of the following code.
    /// \code
    ///   while ( !b.emptyQueue() ) {
    ///     b.processNextNode();
    ///   }
    /// \endcode
    void start() {
      while ( !emptyQueue() ) processNextNode();
    }

    /// \brief Executes the algorithm until the given target node is reached.
    ///
    /// Executes the algorithm until the given target node is reached.
    ///
    /// This method runs the %BFS algorithm from the root node(s)
    /// in order to compute the shortest path to \c t.
    ///
    /// The algorithm computes
    /// - the shortest path to \c t,
    /// - the distance of \c t from the root(s).
    ///
    /// \pre init() must be called and at least one root node should be
    /// added with addSource() before using this function.
    ///
    /// \note <tt>b.start(t)</tt> is just a shortcut of the following code.
    /// \code
    ///   bool reach = false;
    ///   while ( !b.emptyQueue() && !reach ) {
    ///     b.processNextNode(t, reach);
    ///   }
    /// \endcode
    void start(Node t) {
      bool reach = false;
      while ( !emptyQueue() && !reach ) processNextNode(t, reach);
    }

    /// \brief Executes the algorithm until a condition is met.
    ///
    /// Executes the algorithm until a condition is met.
    ///
    /// This method runs the %BFS algorithm from the root node(s) in
    /// order to compute the shortest path to a node \c v with
    /// <tt>nm[v]</tt> true, if such a node can be found.
    ///
    /// \param nm must be a bool (or convertible) node map. The
    /// algorithm will stop when it reaches a node \c v with
    /// <tt>nm[v]</tt> true.
    ///
    /// \return The reached node \c v with <tt>nm[v]</tt> true or
    /// \c INVALID if no such node was found.
    ///
    /// \pre init() must be called and at least one root node should be
    /// added with addSource() before using this function.
    ///
    /// \note <tt>b.start(nm)</tt> is just a shortcut of the following code.
    /// \code
    ///   Node rnode = INVALID;
    ///   while ( !b.emptyQueue() && rnode == INVALID ) {
    ///     b.processNextNode(nm, rnode);
    ///   }
    ///   return rnode;
    /// \endcode
    template <typename NM>
    Node start(const NM &nm) {
      Node rnode = INVALID;
      while ( !emptyQueue() && rnode == INVALID ) {
        processNextNode(nm, rnode);
      }
      return rnode;
    }

    /// \brief Runs the algorithm from the given source node.
    ///
    /// This method runs the %BFS algorithm from node \c s
    /// in order to compute the shortest path to each node.
    ///
    /// The algorithm computes
    /// - the shortest path tree,
    /// - the distance of each node from the root.
    ///
    /// \note <tt>b.run(s)</tt> is just a shortcut of the following code.
    ///\code
    ///   b.init();
    ///   b.addSource(s);
    ///   b.start();
    ///\endcode
    void run(Node s) {
      init();
      addSource(s);
      start();
    }

    /// \brief Finds the shortest path between \c s and \c t.
    ///
    /// This method runs the %BFS algorithm from node \c s
    /// in order to compute the shortest path to node \c t
    /// (it stops searching when \c t is processed).
    ///
    /// \return \c true if \c t is reachable form \c s.
    ///
    /// \note Apart from the return value, <tt>b.run(s,t)</tt> is just a
    /// shortcut of the following code.
    ///\code
    ///   b.init();
    ///   b.addSource(s);
    ///   b.start(t);
    ///\endcode
    bool run(Node s,Node t) {
      init();
      addSource(s);
      start(t);
      return reached(t);
    }

    /// \brief Runs the algorithm to visit all nodes in the digraph.
    ///
    /// This method runs the %BFS algorithm in order to visit all nodes
    /// in the digraph.
    ///
    /// \note <tt>b.run(s)</tt> is just a shortcut of the following code.
    ///\code
    ///  b.init();
    ///  for (NodeIt n(gr); n != INVALID; ++n) {
    ///    if (!b.reached(n)) {
    ///      b.addSource(n);
    ///      b.start();
    ///    }
    ///  }
    ///\endcode
    void run() {
      init();
      for (NodeIt it(*_digraph); it != INVALID; ++it) {
        if (!reached(it)) {
          addSource(it);
          start();
        }
      }
    }

    ///@}

    /// \name Query Functions
    /// The results of the BFS algorithm can be obtained using these
    /// functions.\n
    /// Either \ref run(Node) "run()" or \ref start() should be called
    /// before using them.

    ///@{

    /// \brief Checks if the given node is reached from the root(s).
    ///
    /// Returns \c true if \c v is reached from the root(s).
    ///
    /// \pre Either \ref run(Node) "run()" or \ref init()
    /// must be called before using this function.
    bool reached(Node v) const { return (*_reached)[v]; }

    ///@}

  };

} //END OF NAMESPACE LEMON

#endif