Welcome to mirror list, hosted at ThFree Co, Russian Federation.

variant.h « bits « lemon « lemon-1.3.1 « 3rd « quadriflow « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: b8301892e61f8cdc669b47ccefa3ce43c63ab224 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
/* -*- mode: C++; indent-tabs-mode: nil; -*-
 *
 * This file is a part of LEMON, a generic C++ optimization library.
 *
 * Copyright (C) 2003-2009
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
 *
 * Permission to use, modify and distribute this software is granted
 * provided that this copyright notice appears in all copies. For
 * precise terms see the accompanying LICENSE file.
 *
 * This software is provided "AS IS" with no warranty of any kind,
 * express or implied, and with no claim as to its suitability for any
 * purpose.
 *
 */

#ifndef LEMON_BITS_VARIANT_H
#define LEMON_BITS_VARIANT_H

#include <lemon/assert.h>

// \file
// \brief Variant types

namespace lemon {

  namespace _variant_bits {

    template <int left, int right>
    struct CTMax {
      static const int value = left < right ? right : left;
    };

  }


  // \brief Simple Variant type for two types
  //
  // Simple Variant type for two types. The Variant type is a type-safe
  // union. C++ has strong limitations for using unions, for
  // example you cannot store a type with non-default constructor or
  // destructor in a union. This class always knowns the current
  // state of the variant and it cares for the proper construction
  // and destruction.
  template <typename _First, typename _Second>
  class BiVariant {
  public:

    // \brief The \c First type.
    typedef _First First;
    // \brief The \c Second type.
    typedef _Second Second;

    // \brief Constructor
    //
    // This constructor initalizes to the default value of the \c First
    // type.
    BiVariant() {
      flag = true;
      new(reinterpret_cast<First*>(data)) First();
    }

    // \brief Constructor
    //
    // This constructor initalizes to the given value of the \c First
    // type.
    BiVariant(const First& f) {
      flag = true;
      new(reinterpret_cast<First*>(data)) First(f);
    }

    // \brief Constructor
    //
    // This constructor initalizes to the given value of the \c
    // Second type.
    BiVariant(const Second& s) {
      flag = false;
      new(reinterpret_cast<Second*>(data)) Second(s);
    }

    // \brief Copy constructor
    //
    // Copy constructor
    BiVariant(const BiVariant& bivariant) {
      flag = bivariant.flag;
      if (flag) {
        new(reinterpret_cast<First*>(data)) First(bivariant.first());
      } else {
        new(reinterpret_cast<Second*>(data)) Second(bivariant.second());
      }
    }

    // \brief Destrcutor
    //
    // Destructor
    ~BiVariant() {
      destroy();
    }

    // \brief Set to the default value of the \c First type.
    //
    // This function sets the variant to the default value of the \c
    // First type.
    BiVariant& setFirst() {
      destroy();
      flag = true;
      new(reinterpret_cast<First*>(data)) First();
      return *this;
    }

    // \brief Set to the given value of the \c First type.
    //
    // This function sets the variant to the given value of the \c
    // First type.
    BiVariant& setFirst(const First& f) {
      destroy();
      flag = true;
      new(reinterpret_cast<First*>(data)) First(f);
      return *this;
    }

    // \brief Set to the default value of the \c Second type.
    //
    // This function sets the variant to the default value of the \c
    // Second type.
    BiVariant& setSecond() {
      destroy();
      flag = false;
      new(reinterpret_cast<Second*>(data)) Second();
      return *this;
    }

    // \brief Set to the given value of the \c Second type.
    //
    // This function sets the variant to the given value of the \c
    // Second type.
    BiVariant& setSecond(const Second& s) {
      destroy();
      flag = false;
      new(reinterpret_cast<Second*>(data)) Second(s);
      return *this;
    }

    // \brief Operator form of the \c setFirst()
    BiVariant& operator=(const First& f) {
      return setFirst(f);
    }

    // \brief Operator form of the \c setSecond()
    BiVariant& operator=(const Second& s) {
      return setSecond(s);
    }

    // \brief Assign operator
    BiVariant& operator=(const BiVariant& bivariant) {
      if (this == &bivariant) return *this;
      destroy();
      flag = bivariant.flag;
      if (flag) {
        new(reinterpret_cast<First*>(data)) First(bivariant.first());
      } else {
        new(reinterpret_cast<Second*>(data)) Second(bivariant.second());
      }
      return *this;
    }

    // \brief Reference to the value
    //
    // Reference to the value of the \c First type.
    // \pre The BiVariant should store value of \c First type.
    First& first() {
      LEMON_DEBUG(flag, "Variant wrong state");
      return *reinterpret_cast<First*>(data);
    }

    // \brief Const reference to the value
    //
    // Const reference to the value of the \c First type.
    // \pre The BiVariant should store value of \c First type.
    const First& first() const {
      LEMON_DEBUG(flag, "Variant wrong state");
      return *reinterpret_cast<const First*>(data);
    }

    // \brief Operator form of the \c first()
    operator First&() { return first(); }
    // \brief Operator form of the const \c first()
    operator const First&() const { return first(); }

    // \brief Reference to the value
    //
    // Reference to the value of the \c Second type.
    // \pre The BiVariant should store value of \c Second type.
    Second& second() {
      LEMON_DEBUG(!flag, "Variant wrong state");
      return *reinterpret_cast<Second*>(data);
    }

    // \brief Const reference to the value
    //
    // Const reference to the value of the \c Second type.
    // \pre The BiVariant should store value of \c Second type.
    const Second& second() const {
      LEMON_DEBUG(!flag, "Variant wrong state");
      return *reinterpret_cast<const Second*>(data);
    }

    // \brief Operator form of the \c second()
    operator Second&() { return second(); }
    // \brief Operator form of the const \c second()
    operator const Second&() const { return second(); }

    // \brief %True when the variant is in the first state
    //
    // %True when the variant stores value of the \c First type.
    bool firstState() const { return flag; }

    // \brief %True when the variant is in the second state
    //
    // %True when the variant stores value of the \c Second type.
    bool secondState() const { return !flag; }

  private:

    void destroy() {
      if (flag) {
        reinterpret_cast<First*>(data)->~First();
      } else {
        reinterpret_cast<Second*>(data)->~Second();
      }
    }

    char data[_variant_bits::CTMax<sizeof(First), sizeof(Second)>::value];
    bool flag;
  };

  namespace _variant_bits {

    template <int _idx, typename _TypeMap>
    struct Memory {

      typedef typename _TypeMap::template Map<_idx>::Type Current;

      static void destroy(int index, char* place) {
        if (index == _idx) {
          reinterpret_cast<Current*>(place)->~Current();
        } else {
          Memory<_idx - 1, _TypeMap>::destroy(index, place);
        }
      }

      static void copy(int index, char* to, const char* from) {
        if (index == _idx) {
          new (reinterpret_cast<Current*>(to))
            Current(reinterpret_cast<const Current*>(from));
        } else {
          Memory<_idx - 1, _TypeMap>::copy(index, to, from);
        }
      }

    };

    template <typename _TypeMap>
    struct Memory<-1, _TypeMap> {

      static void destroy(int, char*) {
        LEMON_DEBUG(false, "Variant wrong index.");
      }

      static void copy(int, char*, const char*) {
        LEMON_DEBUG(false, "Variant wrong index.");
      }
    };

    template <int _idx, typename _TypeMap>
    struct Size {
      static const int value =
      CTMax<sizeof(typename _TypeMap::template Map<_idx>::Type),
            Size<_idx - 1, _TypeMap>::value>::value;
    };

    template <typename _TypeMap>
    struct Size<0, _TypeMap> {
      static const int value =
      sizeof(typename _TypeMap::template Map<0>::Type);
    };

  }

  // \brief Variant type
  //
  // Simple Variant type. The Variant type is a type-safe union.
  // C++ has strong limitations for using unions, for example you
  // cannot store type with non-default constructor or destructor in
  // a union. This class always knowns the current state of the
  // variant and it cares for the proper construction and
  // destruction.
  //
  // \param _num The number of the types which can be stored in the
  // variant type.
  // \param _TypeMap This class describes the types of the Variant. The
  // _TypeMap::Map<index>::Type should be a valid type for each index
  // in the range {0, 1, ..., _num - 1}. The \c VariantTypeMap is helper
  // class to define such type mappings up to 10 types.
  //
  // And the usage of the class:
  //\code
  // typedef Variant<3, VariantTypeMap<int, std::string, double> > MyVariant;
  // MyVariant var;
  // var.set<0>(12);
  // std::cout << var.get<0>() << std::endl;
  // var.set<1>("alpha");
  // std::cout << var.get<1>() << std::endl;
  // var.set<2>(0.75);
  // std::cout << var.get<2>() << std::endl;
  //\endcode
  //
  // The result of course:
  //\code
  // 12
  // alpha
  // 0.75
  //\endcode
  template <int _num, typename _TypeMap>
  class Variant {
  public:

    static const int num = _num;

    typedef _TypeMap TypeMap;

    // \brief Constructor
    //
    // This constructor initalizes to the default value of the \c type
    // with 0 index.
    Variant() {
      flag = 0;
      new(reinterpret_cast<typename TypeMap::template Map<0>::Type*>(data))
        typename TypeMap::template Map<0>::Type();
    }


    // \brief Copy constructor
    //
    // Copy constructor
    Variant(const Variant& variant) {
      flag = variant.flag;
      _variant_bits::Memory<num - 1, TypeMap>::copy(flag, data, variant.data);
    }

    // \brief Assign operator
    //
    // Assign operator
    Variant& operator=(const Variant& variant) {
      if (this == &variant) return *this;
      _variant_bits::Memory<num - 1, TypeMap>::
        destroy(flag, data);
      flag = variant.flag;
      _variant_bits::Memory<num - 1, TypeMap>::
        copy(flag, data, variant.data);
      return *this;
    }

    // \brief Destrcutor
    //
    // Destructor
    ~Variant() {
      _variant_bits::Memory<num - 1, TypeMap>::destroy(flag, data);
    }

    // \brief Set to the default value of the type with \c _idx index.
    //
    // This function sets the variant to the default value of the
    // type with \c _idx index.
    template <int _idx>
    Variant& set() {
      _variant_bits::Memory<num - 1, TypeMap>::destroy(flag, data);
      flag = _idx;
      new(reinterpret_cast<typename TypeMap::template Map<_idx>::Type*>(data))
        typename TypeMap::template Map<_idx>::Type();
      return *this;
    }

    // \brief Set to the given value of the type with \c _idx index.
    //
    // This function sets the variant to the given value of the type
    // with \c _idx index.
    template <int _idx>
    Variant& set(const typename _TypeMap::template Map<_idx>::Type& init) {
      _variant_bits::Memory<num - 1, TypeMap>::destroy(flag, data);
      flag = _idx;
      new(reinterpret_cast<typename TypeMap::template Map<_idx>::Type*>(data))
        typename TypeMap::template Map<_idx>::Type(init);
      return *this;
    }

    // \brief Gets the current value of the type with \c _idx index.
    //
    // Gets the current value of the type with \c _idx index.
    template <int _idx>
    const typename TypeMap::template Map<_idx>::Type& get() const {
      LEMON_DEBUG(_idx == flag, "Variant wrong index");
      return *reinterpret_cast<const typename TypeMap::
        template Map<_idx>::Type*>(data);
    }

    // \brief Gets the current value of the type with \c _idx index.
    //
    // Gets the current value of the type with \c _idx index.
    template <int _idx>
    typename _TypeMap::template Map<_idx>::Type& get() {
      LEMON_DEBUG(_idx == flag, "Variant wrong index");
      return *reinterpret_cast<typename TypeMap::template Map<_idx>::Type*>
        (data);
    }

    // \brief Returns the current state of the variant.
    //
    // Returns the current state of the variant.
    int state() const {
      return flag;
    }

  private:

    char data[_variant_bits::Size<num - 1, TypeMap>::value];
    int flag;
  };

  namespace _variant_bits {

    template <int _index, typename _List>
    struct Get {
      typedef typename Get<_index - 1, typename _List::Next>::Type Type;
    };

    template <typename _List>
    struct Get<0, _List> {
      typedef typename _List::Type Type;
    };

    struct List {};

    template <typename _Type, typename _List>
    struct Insert {
      typedef _List Next;
      typedef _Type Type;
    };

    template <int _idx, typename _T0, typename _T1, typename _T2,
              typename _T3, typename _T4, typename _T5, typename _T6,
              typename _T7, typename _T8, typename _T9>
    struct Mapper {
      typedef List L10;
      typedef Insert<_T9, L10> L9;
      typedef Insert<_T8, L9> L8;
      typedef Insert<_T7, L8> L7;
      typedef Insert<_T6, L7> L6;
      typedef Insert<_T5, L6> L5;
      typedef Insert<_T4, L5> L4;
      typedef Insert<_T3, L4> L3;
      typedef Insert<_T2, L3> L2;
      typedef Insert<_T1, L2> L1;
      typedef Insert<_T0, L1> L0;
      typedef typename Get<_idx, L0>::Type Type;
    };

  }

  // \brief Helper class for Variant
  //
  // Helper class to define type mappings for Variant. This class
  // converts the template parameters to be mappable by integer.
  // \see Variant
  template <
    typename _T0,
    typename _T1 = void, typename _T2 = void, typename _T3 = void,
    typename _T4 = void, typename _T5 = void, typename _T6 = void,
    typename _T7 = void, typename _T8 = void, typename _T9 = void>
  struct VariantTypeMap {
    template <int _idx>
    struct Map {
      typedef typename _variant_bits::
      Mapper<_idx, _T0, _T1, _T2, _T3, _T4, _T5, _T6, _T7, _T8, _T9>::Type
      Type;
    };
  };

}


#endif