Welcome to mirror list, hosted at ThFree Co, Russian Federation.

bpgraph.h « concepts « lemon « lemon-1.3.1 « 3rd « quadriflow « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 2ebdeaf8b2f687289cd48abd198dd1e2bfd52e40 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
/* -*- mode: C++; indent-tabs-mode: nil; -*-
 *
 * This file is a part of LEMON, a generic C++ optimization library.
 *
 * Copyright (C) 2003-2013
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
 *
 * Permission to use, modify and distribute this software is granted
 * provided that this copyright notice appears in all copies. For
 * precise terms see the accompanying LICENSE file.
 *
 * This software is provided "AS IS" with no warranty of any kind,
 * express or implied, and with no claim as to its suitability for any
 * purpose.
 *
 */

///\ingroup graph_concepts
///\file
///\brief The concept of undirected graphs.

#ifndef LEMON_CONCEPTS_BPGRAPH_H
#define LEMON_CONCEPTS_BPGRAPH_H

#include <lemon/concepts/graph_components.h>
#include <lemon/concepts/maps.h>
#include <lemon/concept_check.h>
#include <lemon/core.h>

namespace lemon {
  namespace concepts {

    /// \ingroup graph_concepts
    ///
    /// \brief Class describing the concept of undirected bipartite graphs.
    ///
    /// This class describes the common interface of all undirected
    /// bipartite graphs.
    ///
    /// Like all concept classes, it only provides an interface
    /// without any sensible implementation. So any general algorithm for
    /// undirected bipartite graphs should compile with this class,
    /// but it will not run properly, of course.
    /// An actual graph implementation like \ref ListBpGraph or
    /// \ref SmartBpGraph may have additional functionality.
    ///
    /// The bipartite graphs also fulfill the concept of \ref Graph
    /// "undirected graphs". Bipartite graphs provide a bipartition of
    /// the node set, namely a red and blue set of the nodes. The
    /// nodes can be iterated with the RedNodeIt and BlueNodeIt in the
    /// two node sets. With RedNodeMap and BlueNodeMap values can be
    /// assigned to the nodes in the two sets.
    ///
    /// The edges of the graph cannot connect two nodes of the same
    /// set. The edges inherent orientation is from the red nodes to
    /// the blue nodes.
    ///
    /// \sa Graph
    class BpGraph {
    private:
      /// BpGraphs are \e not copy constructible. Use bpGraphCopy instead.
      BpGraph(const BpGraph&) {}
      /// \brief Assignment of a graph to another one is \e not allowed.
      /// Use bpGraphCopy instead.
      void operator=(const BpGraph&) {}

    public:
      /// Default constructor.
      BpGraph() {}

      /// \brief Undirected graphs should be tagged with \c UndirectedTag.
      ///
      /// Undirected graphs should be tagged with \c UndirectedTag.
      ///
      /// This tag helps the \c enable_if technics to make compile time
      /// specializations for undirected graphs.
      typedef True UndirectedTag;

      /// The node type of the graph

      /// This class identifies a node of the graph. It also serves
      /// as a base class of the node iterators,
      /// thus they convert to this type.
      class Node {
      public:
        /// Default constructor

        /// Default constructor.
        /// \warning It sets the object to an undefined value.
        Node() { }
        /// Copy constructor.

        /// Copy constructor.
        ///
        Node(const Node&) { }

        /// %Invalid constructor \& conversion.

        /// Initializes the object to be invalid.
        /// \sa Invalid for more details.
        Node(Invalid) { }
        /// Equality operator

        /// Equality operator.
        ///
        /// Two iterators are equal if and only if they point to the
        /// same object or both are \c INVALID.
        bool operator==(Node) const { return true; }

        /// Inequality operator

        /// Inequality operator.
        bool operator!=(Node) const { return true; }

        /// Artificial ordering operator.

        /// Artificial ordering operator.
        ///
        /// \note This operator only has to define some strict ordering of
        /// the items; this order has nothing to do with the iteration
        /// ordering of the items.
        bool operator<(Node) const { return false; }

      };

      /// Class to represent red nodes.

      /// This class represents the red nodes of the graph. It does
      /// not supposed to be used directly, because the nodes can be
      /// represented as Node instances. This class can be used as
      /// template parameter for special map classes.
      class RedNode : public Node {
      public:
        /// Default constructor

        /// Default constructor.
        /// \warning It sets the object to an undefined value.
        RedNode() { }
        /// Copy constructor.

        /// Copy constructor.
        ///
        RedNode(const RedNode&) : Node() { }

        /// %Invalid constructor \& conversion.

        /// Initializes the object to be invalid.
        /// \sa Invalid for more details.
        RedNode(Invalid) { }

      };

      /// Class to represent blue nodes.

      /// This class represents the blue nodes of the graph. It does
      /// not supposed to be used directly, because the nodes can be
      /// represented as Node instances. This class can be used as
      /// template parameter for special map classes.
      class BlueNode : public Node {
      public:
        /// Default constructor

        /// Default constructor.
        /// \warning It sets the object to an undefined value.
        BlueNode() { }
        /// Copy constructor.

        /// Copy constructor.
        ///
        BlueNode(const BlueNode&) : Node() { }

        /// %Invalid constructor \& conversion.

        /// Initializes the object to be invalid.
        /// \sa Invalid for more details.
        BlueNode(Invalid) { }

      };

      /// Iterator class for the red nodes.

      /// This iterator goes through each red node of the graph.
      /// Its usage is quite simple, for example, you can count the number
      /// of red nodes in a graph \c g of type \c %BpGraph like this:
      ///\code
      /// int count=0;
      /// for (BpGraph::RedNodeIt n(g); n!=INVALID; ++n) ++count;
      ///\endcode
      class RedNodeIt : public RedNode {
      public:
        /// Default constructor

        /// Default constructor.
        /// \warning It sets the iterator to an undefined value.
        RedNodeIt() { }
        /// Copy constructor.

        /// Copy constructor.
        ///
        RedNodeIt(const RedNodeIt& n) : RedNode(n) { }
        /// %Invalid constructor \& conversion.

        /// Initializes the iterator to be invalid.
        /// \sa Invalid for more details.
        RedNodeIt(Invalid) { }
        /// Sets the iterator to the first red node.

        /// Sets the iterator to the first red node of the given
        /// digraph.
        explicit RedNodeIt(const BpGraph&) { }
        /// Sets the iterator to the given red node.

        /// Sets the iterator to the given red node of the given
        /// digraph.
        RedNodeIt(const BpGraph&, const RedNode&) { }
        /// Next node.

        /// Assign the iterator to the next red node.
        ///
        RedNodeIt& operator++() { return *this; }
      };

      /// Iterator class for the blue nodes.

      /// This iterator goes through each blue node of the graph.
      /// Its usage is quite simple, for example, you can count the number
      /// of blue nodes in a graph \c g of type \c %BpGraph like this:
      ///\code
      /// int count=0;
      /// for (BpGraph::BlueNodeIt n(g); n!=INVALID; ++n) ++count;
      ///\endcode
      class BlueNodeIt : public BlueNode {
      public:
        /// Default constructor

        /// Default constructor.
        /// \warning It sets the iterator to an undefined value.
        BlueNodeIt() { }
        /// Copy constructor.

        /// Copy constructor.
        ///
        BlueNodeIt(const BlueNodeIt& n) : BlueNode(n) { }
        /// %Invalid constructor \& conversion.

        /// Initializes the iterator to be invalid.
        /// \sa Invalid for more details.
        BlueNodeIt(Invalid) { }
        /// Sets the iterator to the first blue node.

        /// Sets the iterator to the first blue node of the given
        /// digraph.
        explicit BlueNodeIt(const BpGraph&) { }
        /// Sets the iterator to the given blue node.

        /// Sets the iterator to the given blue node of the given
        /// digraph.
        BlueNodeIt(const BpGraph&, const BlueNode&) { }
        /// Next node.

        /// Assign the iterator to the next blue node.
        ///
        BlueNodeIt& operator++() { return *this; }
      };

      /// Iterator class for the nodes.

      /// This iterator goes through each node of the graph.
      /// Its usage is quite simple, for example, you can count the number
      /// of nodes in a graph \c g of type \c %BpGraph like this:
      ///\code
      /// int count=0;
      /// for (BpGraph::NodeIt n(g); n!=INVALID; ++n) ++count;
      ///\endcode
      class NodeIt : public Node {
      public:
        /// Default constructor

        /// Default constructor.
        /// \warning It sets the iterator to an undefined value.
        NodeIt() { }
        /// Copy constructor.

        /// Copy constructor.
        ///
        NodeIt(const NodeIt& n) : Node(n) { }
        /// %Invalid constructor \& conversion.

        /// Initializes the iterator to be invalid.
        /// \sa Invalid for more details.
        NodeIt(Invalid) { }
        /// Sets the iterator to the first node.

        /// Sets the iterator to the first node of the given digraph.
        ///
        explicit NodeIt(const BpGraph&) { }
        /// Sets the iterator to the given node.

        /// Sets the iterator to the given node of the given digraph.
        ///
        NodeIt(const BpGraph&, const Node&) { }
        /// Next node.

        /// Assign the iterator to the next node.
        ///
        NodeIt& operator++() { return *this; }
      };


      /// The edge type of the graph

      /// This class identifies an edge of the graph. It also serves
      /// as a base class of the edge iterators,
      /// thus they will convert to this type.
      class Edge {
      public:
        /// Default constructor

        /// Default constructor.
        /// \warning It sets the object to an undefined value.
        Edge() { }
        /// Copy constructor.

        /// Copy constructor.
        ///
        Edge(const Edge&) { }
        /// %Invalid constructor \& conversion.

        /// Initializes the object to be invalid.
        /// \sa Invalid for more details.
        Edge(Invalid) { }
        /// Equality operator

        /// Equality operator.
        ///
        /// Two iterators are equal if and only if they point to the
        /// same object or both are \c INVALID.
        bool operator==(Edge) const { return true; }
        /// Inequality operator

        /// Inequality operator.
        bool operator!=(Edge) const { return true; }

        /// Artificial ordering operator.

        /// Artificial ordering operator.
        ///
        /// \note This operator only has to define some strict ordering of
        /// the edges; this order has nothing to do with the iteration
        /// ordering of the edges.
        bool operator<(Edge) const { return false; }
      };

      /// Iterator class for the edges.

      /// This iterator goes through each edge of the graph.
      /// Its usage is quite simple, for example, you can count the number
      /// of edges in a graph \c g of type \c %BpGraph as follows:
      ///\code
      /// int count=0;
      /// for(BpGraph::EdgeIt e(g); e!=INVALID; ++e) ++count;
      ///\endcode
      class EdgeIt : public Edge {
      public:
        /// Default constructor

        /// Default constructor.
        /// \warning It sets the iterator to an undefined value.
        EdgeIt() { }
        /// Copy constructor.

        /// Copy constructor.
        ///
        EdgeIt(const EdgeIt& e) : Edge(e) { }
        /// %Invalid constructor \& conversion.

        /// Initializes the iterator to be invalid.
        /// \sa Invalid for more details.
        EdgeIt(Invalid) { }
        /// Sets the iterator to the first edge.

        /// Sets the iterator to the first edge of the given graph.
        ///
        explicit EdgeIt(const BpGraph&) { }
        /// Sets the iterator to the given edge.

        /// Sets the iterator to the given edge of the given graph.
        ///
        EdgeIt(const BpGraph&, const Edge&) { }
        /// Next edge

        /// Assign the iterator to the next edge.
        ///
        EdgeIt& operator++() { return *this; }
      };

      /// Iterator class for the incident edges of a node.

      /// This iterator goes trough the incident undirected edges
      /// of a certain node of a graph.
      /// Its usage is quite simple, for example, you can compute the
      /// degree (i.e. the number of incident edges) of a node \c n
      /// in a graph \c g of type \c %BpGraph as follows.
      ///
      ///\code
      /// int count=0;
      /// for(BpGraph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count;
      ///\endcode
      ///
      /// \warning Loop edges will be iterated twice.
      class IncEdgeIt : public Edge {
      public:
        /// Default constructor

        /// Default constructor.
        /// \warning It sets the iterator to an undefined value.
        IncEdgeIt() { }
        /// Copy constructor.

        /// Copy constructor.
        ///
        IncEdgeIt(const IncEdgeIt& e) : Edge(e) { }
        /// %Invalid constructor \& conversion.

        /// Initializes the iterator to be invalid.
        /// \sa Invalid for more details.
        IncEdgeIt(Invalid) { }
        /// Sets the iterator to the first incident edge.

        /// Sets the iterator to the first incident edge of the given node.
        ///
        IncEdgeIt(const BpGraph&, const Node&) { }
        /// Sets the iterator to the given edge.

        /// Sets the iterator to the given edge of the given graph.
        ///
        IncEdgeIt(const BpGraph&, const Edge&) { }
        /// Next incident edge

        /// Assign the iterator to the next incident edge
        /// of the corresponding node.
        IncEdgeIt& operator++() { return *this; }
      };

      /// The arc type of the graph

      /// This class identifies a directed arc of the graph. It also serves
      /// as a base class of the arc iterators,
      /// thus they will convert to this type.
      class Arc {
      public:
        /// Default constructor

        /// Default constructor.
        /// \warning It sets the object to an undefined value.
        Arc() { }
        /// Copy constructor.

        /// Copy constructor.
        ///
        Arc(const Arc&) { }
        /// %Invalid constructor \& conversion.

        /// Initializes the object to be invalid.
        /// \sa Invalid for more details.
        Arc(Invalid) { }
        /// Equality operator

        /// Equality operator.
        ///
        /// Two iterators are equal if and only if they point to the
        /// same object or both are \c INVALID.
        bool operator==(Arc) const { return true; }
        /// Inequality operator

        /// Inequality operator.
        bool operator!=(Arc) const { return true; }

        /// Artificial ordering operator.

        /// Artificial ordering operator.
        ///
        /// \note This operator only has to define some strict ordering of
        /// the arcs; this order has nothing to do with the iteration
        /// ordering of the arcs.
        bool operator<(Arc) const { return false; }

        /// Converison to \c Edge

        /// Converison to \c Edge.
        ///
        operator Edge() const { return Edge(); }
      };

      /// Iterator class for the arcs.

      /// This iterator goes through each directed arc of the graph.
      /// Its usage is quite simple, for example, you can count the number
      /// of arcs in a graph \c g of type \c %BpGraph as follows:
      ///\code
      /// int count=0;
      /// for(BpGraph::ArcIt a(g); a!=INVALID; ++a) ++count;
      ///\endcode
      class ArcIt : public Arc {
      public:
        /// Default constructor

        /// Default constructor.
        /// \warning It sets the iterator to an undefined value.
        ArcIt() { }
        /// Copy constructor.

        /// Copy constructor.
        ///
        ArcIt(const ArcIt& e) : Arc(e) { }
        /// %Invalid constructor \& conversion.

        /// Initializes the iterator to be invalid.
        /// \sa Invalid for more details.
        ArcIt(Invalid) { }
        /// Sets the iterator to the first arc.

        /// Sets the iterator to the first arc of the given graph.
        ///
        explicit ArcIt(const BpGraph &g)
        {
          ::lemon::ignore_unused_variable_warning(g);
        }
        /// Sets the iterator to the given arc.

        /// Sets the iterator to the given arc of the given graph.
        ///
        ArcIt(const BpGraph&, const Arc&) { }
        /// Next arc

        /// Assign the iterator to the next arc.
        ///
        ArcIt& operator++() { return *this; }
      };

      /// Iterator class for the outgoing arcs of a node.

      /// This iterator goes trough the \e outgoing directed arcs of a
      /// certain node of a graph.
      /// Its usage is quite simple, for example, you can count the number
      /// of outgoing arcs of a node \c n
      /// in a graph \c g of type \c %BpGraph as follows.
      ///\code
      /// int count=0;
      /// for (Digraph::OutArcIt a(g, n); a!=INVALID; ++a) ++count;
      ///\endcode
      class OutArcIt : public Arc {
      public:
        /// Default constructor

        /// Default constructor.
        /// \warning It sets the iterator to an undefined value.
        OutArcIt() { }
        /// Copy constructor.

        /// Copy constructor.
        ///
        OutArcIt(const OutArcIt& e) : Arc(e) { }
        /// %Invalid constructor \& conversion.

        /// Initializes the iterator to be invalid.
        /// \sa Invalid for more details.
        OutArcIt(Invalid) { }
        /// Sets the iterator to the first outgoing arc.

        /// Sets the iterator to the first outgoing arc of the given node.
        ///
        OutArcIt(const BpGraph& n, const Node& g) {
          ::lemon::ignore_unused_variable_warning(n);
          ::lemon::ignore_unused_variable_warning(g);
        }
        /// Sets the iterator to the given arc.

        /// Sets the iterator to the given arc of the given graph.
        ///
        OutArcIt(const BpGraph&, const Arc&) { }
        /// Next outgoing arc

        /// Assign the iterator to the next
        /// outgoing arc of the corresponding node.
        OutArcIt& operator++() { return *this; }
      };

      /// Iterator class for the incoming arcs of a node.

      /// This iterator goes trough the \e incoming directed arcs of a
      /// certain node of a graph.
      /// Its usage is quite simple, for example, you can count the number
      /// of incoming arcs of a node \c n
      /// in a graph \c g of type \c %BpGraph as follows.
      ///\code
      /// int count=0;
      /// for (Digraph::InArcIt a(g, n); a!=INVALID; ++a) ++count;
      ///\endcode
      class InArcIt : public Arc {
      public:
        /// Default constructor

        /// Default constructor.
        /// \warning It sets the iterator to an undefined value.
        InArcIt() { }
        /// Copy constructor.

        /// Copy constructor.
        ///
        InArcIt(const InArcIt& e) : Arc(e) { }
        /// %Invalid constructor \& conversion.

        /// Initializes the iterator to be invalid.
        /// \sa Invalid for more details.
        InArcIt(Invalid) { }
        /// Sets the iterator to the first incoming arc.

        /// Sets the iterator to the first incoming arc of the given node.
        ///
        InArcIt(const BpGraph& g, const Node& n) {
          ::lemon::ignore_unused_variable_warning(n);
          ::lemon::ignore_unused_variable_warning(g);
        }
        /// Sets the iterator to the given arc.

        /// Sets the iterator to the given arc of the given graph.
        ///
        InArcIt(const BpGraph&, const Arc&) { }
        /// Next incoming arc

        /// Assign the iterator to the next
        /// incoming arc of the corresponding node.
        InArcIt& operator++() { return *this; }
      };

      /// \brief Standard graph map type for the nodes.
      ///
      /// Standard graph map type for the nodes.
      /// It conforms to the ReferenceMap concept.
      template<class T>
      class NodeMap : public ReferenceMap<Node, T, T&, const T&>
      {
      public:

        /// Constructor
        explicit NodeMap(const BpGraph&) { }
        /// Constructor with given initial value
        NodeMap(const BpGraph&, T) { }

      private:
        ///Copy constructor
        NodeMap(const NodeMap& nm) :
          ReferenceMap<Node, T, T&, const T&>(nm) { }
        ///Assignment operator
        template <typename CMap>
        NodeMap& operator=(const CMap&) {
          checkConcept<ReadMap<Node, T>, CMap>();
          return *this;
        }
      };

      /// \brief Standard graph map type for the red nodes.
      ///
      /// Standard graph map type for the red nodes.
      /// It conforms to the ReferenceMap concept.
      template<class T>
      class RedNodeMap : public ReferenceMap<Node, T, T&, const T&>
      {
      public:

        /// Constructor
        explicit RedNodeMap(const BpGraph&) { }
        /// Constructor with given initial value
        RedNodeMap(const BpGraph&, T) { }

      private:
        ///Copy constructor
        RedNodeMap(const RedNodeMap& nm) :
          ReferenceMap<Node, T, T&, const T&>(nm) { }
        ///Assignment operator
        template <typename CMap>
        RedNodeMap& operator=(const CMap&) {
          checkConcept<ReadMap<Node, T>, CMap>();
          return *this;
        }
      };

      /// \brief Standard graph map type for the blue nodes.
      ///
      /// Standard graph map type for the blue nodes.
      /// It conforms to the ReferenceMap concept.
      template<class T>
      class BlueNodeMap : public ReferenceMap<Node, T, T&, const T&>
      {
      public:

        /// Constructor
        explicit BlueNodeMap(const BpGraph&) { }
        /// Constructor with given initial value
        BlueNodeMap(const BpGraph&, T) { }

      private:
        ///Copy constructor
        BlueNodeMap(const BlueNodeMap& nm) :
          ReferenceMap<Node, T, T&, const T&>(nm) { }
        ///Assignment operator
        template <typename CMap>
        BlueNodeMap& operator=(const CMap&) {
          checkConcept<ReadMap<Node, T>, CMap>();
          return *this;
        }
      };

      /// \brief Standard graph map type for the arcs.
      ///
      /// Standard graph map type for the arcs.
      /// It conforms to the ReferenceMap concept.
      template<class T>
      class ArcMap : public ReferenceMap<Arc, T, T&, const T&>
      {
      public:

        /// Constructor
        explicit ArcMap(const BpGraph&) { }
        /// Constructor with given initial value
        ArcMap(const BpGraph&, T) { }

      private:
        ///Copy constructor
        ArcMap(const ArcMap& em) :
          ReferenceMap<Arc, T, T&, const T&>(em) { }
        ///Assignment operator
        template <typename CMap>
        ArcMap& operator=(const CMap&) {
          checkConcept<ReadMap<Arc, T>, CMap>();
          return *this;
        }
      };

      /// \brief Standard graph map type for the edges.
      ///
      /// Standard graph map type for the edges.
      /// It conforms to the ReferenceMap concept.
      template<class T>
      class EdgeMap : public ReferenceMap<Edge, T, T&, const T&>
      {
      public:

        /// Constructor
        explicit EdgeMap(const BpGraph&) { }
        /// Constructor with given initial value
        EdgeMap(const BpGraph&, T) { }

      private:
        ///Copy constructor
        EdgeMap(const EdgeMap& em) :
          ReferenceMap<Edge, T, T&, const T&>(em) {}
        ///Assignment operator
        template <typename CMap>
        EdgeMap& operator=(const CMap&) {
          checkConcept<ReadMap<Edge, T>, CMap>();
          return *this;
        }
      };

      /// \brief Gives back %true for red nodes.
      ///
      /// Gives back %true for red nodes.
      bool red(const Node&) const { return true; }

      /// \brief Gives back %true for blue nodes.
      ///
      /// Gives back %true for blue nodes.
      bool blue(const Node&) const { return true; }

      /// \brief Converts the node to red node object.
      ///
      /// This function converts unsafely the node to red node
      /// object. It should be called only if the node is from the red
      /// partition or INVALID.
      RedNode asRedNodeUnsafe(const Node&) const { return RedNode(); }

      /// \brief Converts the node to blue node object.
      ///
      /// This function converts unsafely the node to blue node
      /// object. It should be called only if the node is from the red
      /// partition or INVALID.
      BlueNode asBlueNodeUnsafe(const Node&) const { return BlueNode(); }

      /// \brief Converts the node to red node object.
      ///
      /// This function converts safely the node to red node
      /// object. If the node is not from the red partition, then it
      /// returns INVALID.
      RedNode asRedNode(const Node&) const { return RedNode(); }

      /// \brief Converts the node to blue node object.
      ///
      /// This function converts unsafely the node to blue node
      /// object. If the node is not from the blue partition, then it
      /// returns INVALID.
      BlueNode asBlueNode(const Node&) const { return BlueNode(); }

      /// \brief Gives back the red end node of the edge.
      ///
      /// Gives back the red end node of the edge.
      RedNode redNode(const Edge&) const { return RedNode(); }

      /// \brief Gives back the blue end node of the edge.
      ///
      /// Gives back the blue end node of the edge.
      BlueNode blueNode(const Edge&) const { return BlueNode(); }

      /// \brief The first node of the edge.
      ///
      /// It is a synonim for the \c redNode().
      Node u(Edge) const { return INVALID; }

      /// \brief The second node of the edge.
      ///
      /// It is a synonim for the \c blueNode().
      Node v(Edge) const { return INVALID; }

      /// \brief The source node of the arc.
      ///
      /// Returns the source node of the given arc.
      Node source(Arc) const { return INVALID; }

      /// \brief The target node of the arc.
      ///
      /// Returns the target node of the given arc.
      Node target(Arc) const { return INVALID; }

      /// \brief The ID of the node.
      ///
      /// Returns the ID of the given node.
      int id(Node) const { return -1; }

      /// \brief The red ID of the node.
      ///
      /// Returns the red ID of the given node.
      int id(RedNode) const { return -1; }

      /// \brief The blue ID of the node.
      ///
      /// Returns the blue ID of the given node.
      int id(BlueNode) const { return -1; }

      /// \brief The ID of the edge.
      ///
      /// Returns the ID of the given edge.
      int id(Edge) const { return -1; }

      /// \brief The ID of the arc.
      ///
      /// Returns the ID of the given arc.
      int id(Arc) const { return -1; }

      /// \brief The node with the given ID.
      ///
      /// Returns the node with the given ID.
      /// \pre The argument should be a valid node ID in the graph.
      Node nodeFromId(int) const { return INVALID; }

      /// \brief The edge with the given ID.
      ///
      /// Returns the edge with the given ID.
      /// \pre The argument should be a valid edge ID in the graph.
      Edge edgeFromId(int) const { return INVALID; }

      /// \brief The arc with the given ID.
      ///
      /// Returns the arc with the given ID.
      /// \pre The argument should be a valid arc ID in the graph.
      Arc arcFromId(int) const { return INVALID; }

      /// \brief An upper bound on the node IDs.
      ///
      /// Returns an upper bound on the node IDs.
      int maxNodeId() const { return -1; }

      /// \brief An upper bound on the red IDs.
      ///
      /// Returns an upper bound on the red IDs.
      int maxRedId() const { return -1; }

      /// \brief An upper bound on the blue IDs.
      ///
      /// Returns an upper bound on the blue IDs.
      int maxBlueId() const { return -1; }

      /// \brief An upper bound on the edge IDs.
      ///
      /// Returns an upper bound on the edge IDs.
      int maxEdgeId() const { return -1; }

      /// \brief An upper bound on the arc IDs.
      ///
      /// Returns an upper bound on the arc IDs.
      int maxArcId() const { return -1; }

      /// \brief The direction of the arc.
      ///
      /// Returns \c true if the given arc goes from a red node to a blue node.
      bool direction(Arc) const { return true; }

      /// \brief Direct the edge.
      ///
      /// Direct the given edge. The returned arc
      /// represents the given edge and its direction comes
      /// from the bool parameter. If it is \c true, then the source of the node
      /// will be a red node.
      Arc direct(Edge, bool) const {
        return INVALID;
      }

      /// \brief Direct the edge.
      ///
      /// Direct the given edge. The returned arc represents the given
      /// edge and its source node is the given node.
      Arc direct(Edge, Node) const {
        return INVALID;
      }

      /// \brief The oppositely directed arc.
      ///
      /// Returns the oppositely directed arc representing the same edge.
      Arc oppositeArc(Arc) const { return INVALID; }

      /// \brief The opposite node on the edge.
      ///
      /// Returns the opposite node on the given edge.
      Node oppositeNode(Node, Edge) const { return INVALID; }

      void first(Node&) const {}
      void next(Node&) const {}

      void firstRed(RedNode&) const {}
      void nextRed(RedNode&) const {}

      void firstBlue(BlueNode&) const {}
      void nextBlue(BlueNode&) const {}

      void first(Edge&) const {}
      void next(Edge&) const {}

      void first(Arc&) const {}
      void next(Arc&) const {}

      void firstOut(Arc&, Node) const {}
      void nextOut(Arc&) const {}

      void firstIn(Arc&, Node) const {}
      void nextIn(Arc&) const {}

      void firstInc(Edge &, bool &, const Node &) const {}
      void nextInc(Edge &, bool &) const {}

      // The second parameter is dummy.
      Node fromId(int, Node) const { return INVALID; }
      // The second parameter is dummy.
      Edge fromId(int, Edge) const { return INVALID; }
      // The second parameter is dummy.
      Arc fromId(int, Arc) const { return INVALID; }

      // Dummy parameter.
      int maxId(Node) const { return -1; }
      // Dummy parameter.
      int maxId(RedNode) const { return -1; }
      // Dummy parameter.
      int maxId(BlueNode) const { return -1; }
      // Dummy parameter.
      int maxId(Edge) const { return -1; }
      // Dummy parameter.
      int maxId(Arc) const { return -1; }

      /// \brief The base node of the iterator.
      ///
      /// Returns the base node of the given incident edge iterator.
      Node baseNode(IncEdgeIt) const { return INVALID; }

      /// \brief The running node of the iterator.
      ///
      /// Returns the running node of the given incident edge iterator.
      Node runningNode(IncEdgeIt) const { return INVALID; }

      /// \brief The base node of the iterator.
      ///
      /// Returns the base node of the given outgoing arc iterator
      /// (i.e. the source node of the corresponding arc).
      Node baseNode(OutArcIt) const { return INVALID; }

      /// \brief The running node of the iterator.
      ///
      /// Returns the running node of the given outgoing arc iterator
      /// (i.e. the target node of the corresponding arc).
      Node runningNode(OutArcIt) const { return INVALID; }

      /// \brief The base node of the iterator.
      ///
      /// Returns the base node of the given incoming arc iterator
      /// (i.e. the target node of the corresponding arc).
      Node baseNode(InArcIt) const { return INVALID; }

      /// \brief The running node of the iterator.
      ///
      /// Returns the running node of the given incoming arc iterator
      /// (i.e. the source node of the corresponding arc).
      Node runningNode(InArcIt) const { return INVALID; }

      template <typename _BpGraph>
      struct Constraints {
        void constraints() {
          checkConcept<BaseBpGraphComponent, _BpGraph>();
          checkConcept<IterableBpGraphComponent<>, _BpGraph>();
          checkConcept<IDableBpGraphComponent<>, _BpGraph>();
          checkConcept<MappableBpGraphComponent<>, _BpGraph>();
        }
      };

    };

  }

}

#endif