Welcome to mirror list, hosted at ThFree Co, Russian Federation.

heap.h « concepts « lemon « lemon-1.3.1 « 3rd « quadriflow « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 8c7a25121441b98670233194065059660abaa108 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
/* -*- mode: C++; indent-tabs-mode: nil; -*-
 *
 * This file is a part of LEMON, a generic C++ optimization library.
 *
 * Copyright (C) 2003-2013
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
 *
 * Permission to use, modify and distribute this software is granted
 * provided that this copyright notice appears in all copies. For
 * precise terms see the accompanying LICENSE file.
 *
 * This software is provided "AS IS" with no warranty of any kind,
 * express or implied, and with no claim as to its suitability for any
 * purpose.
 *
 */

#ifndef LEMON_CONCEPTS_HEAP_H
#define LEMON_CONCEPTS_HEAP_H

///\ingroup concept
///\file
///\brief The concept of heaps.

#include <lemon/core.h>
#include <lemon/concept_check.h>

namespace lemon {

  namespace concepts {

    /// \addtogroup concept
    /// @{

    /// \brief The heap concept.
    ///
    /// This concept class describes the main interface of heaps.
    /// The various \ref heaps "heap structures" are efficient
    /// implementations of the abstract data type \e priority \e queue.
    /// They store items with specified values called \e priorities
    /// in such a way that finding and removing the item with minimum
    /// priority are efficient. The basic operations are adding and
    /// erasing items, changing the priority of an item, etc.
    ///
    /// Heaps are crucial in several algorithms, such as Dijkstra and Prim.
    /// Any class that conforms to this concept can be used easily in such
    /// algorithms.
    ///
    /// \tparam PR Type of the priorities of the items.
    /// \tparam IM A read-writable item map with \c int values, used
    /// internally to handle the cross references.
    /// \tparam CMP A functor class for comparing the priorities.
    /// The default is \c std::less<PR>.
#ifdef DOXYGEN
    template <typename PR, typename IM, typename CMP>
#else
    template <typename PR, typename IM, typename CMP = std::less<PR> >
#endif
    class Heap {
    public:

      /// Type of the item-int map.
      typedef IM ItemIntMap;
      /// Type of the priorities.
      typedef PR Prio;
      /// Type of the items stored in the heap.
      typedef typename ItemIntMap::Key Item;

      /// \brief Type to represent the states of the items.
      ///
      /// Each item has a state associated to it. It can be "in heap",
      /// "pre-heap" or "post-heap". The latter two are indifferent from the
      /// heap's point of view, but may be useful to the user.
      ///
      /// The item-int map must be initialized in such way that it assigns
      /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
      enum State {
        IN_HEAP = 0,    ///< = 0. The "in heap" state constant.
        PRE_HEAP = -1,  ///< = -1. The "pre-heap" state constant.
        POST_HEAP = -2  ///< = -2. The "post-heap" state constant.
      };

      /// \brief Constructor.
      ///
      /// Constructor.
      /// \param map A map that assigns \c int values to keys of type
      /// \c Item. It is used internally by the heap implementations to
      /// handle the cross references. The assigned value must be
      /// \c PRE_HEAP (<tt>-1</tt>) for each item.
#ifdef DOXYGEN
      explicit Heap(ItemIntMap &map) {}
#else
      explicit Heap(ItemIntMap&) {}
#endif

      /// \brief Constructor.
      ///
      /// Constructor.
      /// \param map A map that assigns \c int values to keys of type
      /// \c Item. It is used internally by the heap implementations to
      /// handle the cross references. The assigned value must be
      /// \c PRE_HEAP (<tt>-1</tt>) for each item.
      /// \param comp The function object used for comparing the priorities.
#ifdef DOXYGEN
      explicit Heap(ItemIntMap &map, const CMP &comp) {}
#else
      explicit Heap(ItemIntMap&, const CMP&) {}
#endif

      /// \brief The number of items stored in the heap.
      ///
      /// This function returns the number of items stored in the heap.
      int size() const { return 0; }

      /// \brief Check if the heap is empty.
      ///
      /// This function returns \c true if the heap is empty.
      bool empty() const { return false; }

      /// \brief Make the heap empty.
      ///
      /// This functon makes the heap empty.
      /// It does not change the cross reference map. If you want to reuse
      /// a heap that is not surely empty, you should first clear it and
      /// then you should set the cross reference map to \c PRE_HEAP
      /// for each item.
      void clear() {}

      /// \brief Insert an item into the heap with the given priority.
      ///
      /// This function inserts the given item into the heap with the
      /// given priority.
      /// \param i The item to insert.
      /// \param p The priority of the item.
      /// \pre \e i must not be stored in the heap.
#ifdef DOXYGEN
      void push(const Item &i, const Prio &p) {}
#else
      void push(const Item&, const Prio&) {}
#endif

      /// \brief Return the item having minimum priority.
      ///
      /// This function returns the item having minimum priority.
      /// \pre The heap must be non-empty.
      Item top() const { return Item(); }

      /// \brief The minimum priority.
      ///
      /// This function returns the minimum priority.
      /// \pre The heap must be non-empty.
      Prio prio() const { return Prio(); }

      /// \brief Remove the item having minimum priority.
      ///
      /// This function removes the item having minimum priority.
      /// \pre The heap must be non-empty.
      void pop() {}

      /// \brief Remove the given item from the heap.
      ///
      /// This function removes the given item from the heap if it is
      /// already stored.
      /// \param i The item to delete.
      /// \pre \e i must be in the heap.
#ifdef DOXYGEN
      void erase(const Item &i) {}
#else
      void erase(const Item&) {}
#endif

      /// \brief The priority of the given item.
      ///
      /// This function returns the priority of the given item.
      /// \param i The item.
      /// \pre \e i must be in the heap.
#ifdef DOXYGEN
      Prio operator[](const Item &i) const {}
#else
      Prio operator[](const Item&) const { return Prio(); }
#endif

      /// \brief Set the priority of an item or insert it, if it is
      /// not stored in the heap.
      ///
      /// This method sets the priority of the given item if it is
      /// already stored in the heap. Otherwise it inserts the given
      /// item into the heap with the given priority.
      ///
      /// \param i The item.
      /// \param p The priority.
#ifdef DOXYGEN
      void set(const Item &i, const Prio &p) {}
#else
      void set(const Item&, const Prio&) {}
#endif

      /// \brief Decrease the priority of an item to the given value.
      ///
      /// This function decreases the priority of an item to the given value.
      /// \param i The item.
      /// \param p The priority.
      /// \pre \e i must be stored in the heap with priority at least \e p.
#ifdef DOXYGEN
      void decrease(const Item &i, const Prio &p) {}
#else
      void decrease(const Item&, const Prio&) {}
#endif

      /// \brief Increase the priority of an item to the given value.
      ///
      /// This function increases the priority of an item to the given value.
      /// \param i The item.
      /// \param p The priority.
      /// \pre \e i must be stored in the heap with priority at most \e p.
#ifdef DOXYGEN
      void increase(const Item &i, const Prio &p) {}
#else
      void increase(const Item&, const Prio&) {}
#endif

      /// \brief Return the state of an item.
      ///
      /// This method returns \c PRE_HEAP if the given item has never
      /// been in the heap, \c IN_HEAP if it is in the heap at the moment,
      /// and \c POST_HEAP otherwise.
      /// In the latter case it is possible that the item will get back
      /// to the heap again.
      /// \param i The item.
#ifdef DOXYGEN
      State state(const Item &i) const {}
#else
      State state(const Item&) const { return PRE_HEAP; }
#endif

      /// \brief Set the state of an item in the heap.
      ///
      /// This function sets the state of the given item in the heap.
      /// It can be used to manually clear the heap when it is important
      /// to achive better time complexity.
      /// \param i The item.
      /// \param st The state. It should not be \c IN_HEAP.
#ifdef DOXYGEN
      void state(const Item& i, State st) {}
#else
      void state(const Item&, State) {}
#endif


      template <typename _Heap>
      struct Constraints {
      public:
        void constraints() {
          typedef typename _Heap::Item OwnItem;
          typedef typename _Heap::Prio OwnPrio;
          typedef typename _Heap::State OwnState;

          Item item;
          Prio prio;
          item=Item();
          prio=Prio();
          ::lemon::ignore_unused_variable_warning(item);
          ::lemon::ignore_unused_variable_warning(prio);

          OwnItem own_item;
          OwnPrio own_prio;
          OwnState own_state;
          own_item=Item();
          own_prio=Prio();
          ::lemon::ignore_unused_variable_warning(own_item);
          ::lemon::ignore_unused_variable_warning(own_prio);
          ::lemon::ignore_unused_variable_warning(own_state);

          _Heap heap1(map);
          _Heap heap2 = heap1;
          ::lemon::ignore_unused_variable_warning(heap1);
          ::lemon::ignore_unused_variable_warning(heap2);

          int s = heap.size();
          ::lemon::ignore_unused_variable_warning(s);
          bool e = heap.empty();
          ::lemon::ignore_unused_variable_warning(e);

          prio = heap.prio();
          item = heap.top();
          prio = heap[item];
          own_prio = heap.prio();
          own_item = heap.top();
          own_prio = heap[own_item];

          heap.push(item, prio);
          heap.push(own_item, own_prio);
          heap.pop();

          heap.set(item, prio);
          heap.decrease(item, prio);
          heap.increase(item, prio);
          heap.set(own_item, own_prio);
          heap.decrease(own_item, own_prio);
          heap.increase(own_item, own_prio);

          heap.erase(item);
          heap.erase(own_item);
          heap.clear();

          own_state = heap.state(own_item);
          heap.state(own_item, own_state);

          own_state = _Heap::PRE_HEAP;
          own_state = _Heap::IN_HEAP;
          own_state = _Heap::POST_HEAP;
        }

        _Heap& heap;
        ItemIntMap& map;
        Constraints() {}
      };
    };

    /// @}
  } // namespace lemon
}
#endif