Welcome to mirror list, hosted at ThFree Co, Russian Federation.

connectivity.h « lemon « lemon-1.3.1 « 3rd « quadriflow « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 6bd85a18818e34fc53a1ea63d326db89f3779a60 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
/* -*- mode: C++; indent-tabs-mode: nil; -*-
 *
 * This file is a part of LEMON, a generic C++ optimization library.
 *
 * Copyright (C) 2003-2013
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
 *
 * Permission to use, modify and distribute this software is granted
 * provided that this copyright notice appears in all copies. For
 * precise terms see the accompanying LICENSE file.
 *
 * This software is provided "AS IS" with no warranty of any kind,
 * express or implied, and with no claim as to its suitability for any
 * purpose.
 *
 */

#ifndef LEMON_CONNECTIVITY_H
#define LEMON_CONNECTIVITY_H

#include <lemon/dfs.h>
#include <lemon/bfs.h>
#include <lemon/core.h>
#include <lemon/maps.h>
#include <lemon/adaptors.h>

#include <lemon/concepts/digraph.h>
#include <lemon/concepts/graph.h>
#include <lemon/concept_check.h>

#include <stack>
#include <functional>

/// \ingroup graph_properties
/// \file
/// \brief Connectivity algorithms
///
/// Connectivity algorithms

namespace lemon {

  /// \ingroup graph_properties
  ///
  /// \brief Check whether an undirected graph is connected.
  ///
  /// This function checks whether the given undirected graph is connected,
  /// i.e. there is a path between any two nodes in the graph.
  ///
  /// \return \c true if the graph is connected.
  /// \note By definition, the empty graph is connected.
  ///
  /// \see countConnectedComponents(), connectedComponents()
  /// \see stronglyConnected()
  template <typename Graph>
  bool connected(const Graph& graph) {
    checkConcept<concepts::Graph, Graph>();
    typedef typename Graph::NodeIt NodeIt;
    if (NodeIt(graph) == INVALID) return true;
    Dfs<Graph> dfs(graph);
    dfs.run(NodeIt(graph));
    for (NodeIt it(graph); it != INVALID; ++it) {
      if (!dfs.reached(it)) {
        return false;
      }
    }
    return true;
  }

  /// \ingroup graph_properties
  ///
  /// \brief Count the number of connected components of an undirected graph
  ///
  /// This function counts the number of connected components of the given
  /// undirected graph.
  ///
  /// The connected components are the classes of an equivalence relation
  /// on the nodes of an undirected graph. Two nodes are in the same class
  /// if they are connected with a path.
  ///
  /// \return The number of connected components.
  /// \note By definition, the empty graph consists
  /// of zero connected components.
  ///
  /// \see connected(), connectedComponents()
  template <typename Graph>
  int countConnectedComponents(const Graph &graph) {
    checkConcept<concepts::Graph, Graph>();
    typedef typename Graph::Node Node;
    typedef typename Graph::Arc Arc;

    typedef NullMap<Node, Arc> PredMap;
    typedef NullMap<Node, int> DistMap;

    int compNum = 0;
    typename Bfs<Graph>::
      template SetPredMap<PredMap>::
      template SetDistMap<DistMap>::
      Create bfs(graph);

    PredMap predMap;
    bfs.predMap(predMap);

    DistMap distMap;
    bfs.distMap(distMap);

    bfs.init();
    for(typename Graph::NodeIt n(graph); n != INVALID; ++n) {
      if (!bfs.reached(n)) {
        bfs.addSource(n);
        bfs.start();
        ++compNum;
      }
    }
    return compNum;
  }

  /// \ingroup graph_properties
  ///
  /// \brief Find the connected components of an undirected graph
  ///
  /// This function finds the connected components of the given undirected
  /// graph.
  ///
  /// The connected components are the classes of an equivalence relation
  /// on the nodes of an undirected graph. Two nodes are in the same class
  /// if they are connected with a path.
  ///
  /// \image html connected_components.png
  /// \image latex connected_components.eps "Connected components" width=\textwidth
  ///
  /// \param graph The undirected graph.
  /// \retval compMap A writable node map. The values will be set from 0 to
  /// the number of the connected components minus one. Each value of the map
  /// will be set exactly once, and the values of a certain component will be
  /// set continuously.
  /// \return The number of connected components.
  /// \note By definition, the empty graph consists
  /// of zero connected components.
  ///
  /// \see connected(), countConnectedComponents()
  template <class Graph, class NodeMap>
  int connectedComponents(const Graph &graph, NodeMap &compMap) {
    checkConcept<concepts::Graph, Graph>();
    typedef typename Graph::Node Node;
    typedef typename Graph::Arc Arc;
    checkConcept<concepts::WriteMap<Node, int>, NodeMap>();

    typedef NullMap<Node, Arc> PredMap;
    typedef NullMap<Node, int> DistMap;

    int compNum = 0;
    typename Bfs<Graph>::
      template SetPredMap<PredMap>::
      template SetDistMap<DistMap>::
      Create bfs(graph);

    PredMap predMap;
    bfs.predMap(predMap);

    DistMap distMap;
    bfs.distMap(distMap);

    bfs.init();
    for(typename Graph::NodeIt n(graph); n != INVALID; ++n) {
      if(!bfs.reached(n)) {
        bfs.addSource(n);
        while (!bfs.emptyQueue()) {
          compMap.set(bfs.nextNode(), compNum);
          bfs.processNextNode();
        }
        ++compNum;
      }
    }
    return compNum;
  }

  namespace _connectivity_bits {

    template <typename Digraph, typename Iterator >
    struct LeaveOrderVisitor : public DfsVisitor<Digraph> {
    public:
      typedef typename Digraph::Node Node;
      LeaveOrderVisitor(Iterator it) : _it(it) {}

      void leave(const Node& node) {
        *(_it++) = node;
      }

    private:
      Iterator _it;
    };

    template <typename Digraph, typename Map>
    struct FillMapVisitor : public DfsVisitor<Digraph> {
    public:
      typedef typename Digraph::Node Node;
      typedef typename Map::Value Value;

      FillMapVisitor(Map& map, Value& value)
        : _map(map), _value(value) {}

      void reach(const Node& node) {
        _map.set(node, _value);
      }
    private:
      Map& _map;
      Value& _value;
    };

    template <typename Digraph, typename ArcMap>
    struct StronglyConnectedCutArcsVisitor : public DfsVisitor<Digraph> {
    public:
      typedef typename Digraph::Node Node;
      typedef typename Digraph::Arc Arc;

      StronglyConnectedCutArcsVisitor(const Digraph& digraph,
                                      ArcMap& cutMap,
                                      int& cutNum)
        : _digraph(digraph), _cutMap(cutMap), _cutNum(cutNum),
          _compMap(digraph, -1), _num(-1) {
      }

      void start(const Node&) {
        ++_num;
      }

      void reach(const Node& node) {
        _compMap.set(node, _num);
      }

      void examine(const Arc& arc) {
         if (_compMap[_digraph.source(arc)] !=
             _compMap[_digraph.target(arc)]) {
           _cutMap.set(arc, true);
           ++_cutNum;
         }
      }
    private:
      const Digraph& _digraph;
      ArcMap& _cutMap;
      int& _cutNum;

      typename Digraph::template NodeMap<int> _compMap;
      int _num;
    };

  }


  /// \ingroup graph_properties
  ///
  /// \brief Check whether a directed graph is strongly connected.
  ///
  /// This function checks whether the given directed graph is strongly
  /// connected, i.e. any two nodes of the digraph are
  /// connected with directed paths in both direction.
  ///
  /// \return \c true if the digraph is strongly connected.
  /// \note By definition, the empty digraph is strongly connected.
  ///
  /// \see countStronglyConnectedComponents(), stronglyConnectedComponents()
  /// \see connected()
  template <typename Digraph>
  bool stronglyConnected(const Digraph& digraph) {
    checkConcept<concepts::Digraph, Digraph>();

    typedef typename Digraph::Node Node;
    typedef typename Digraph::NodeIt NodeIt;

    typename Digraph::Node source = NodeIt(digraph);
    if (source == INVALID) return true;

    using namespace _connectivity_bits;

    typedef DfsVisitor<Digraph> Visitor;
    Visitor visitor;

    DfsVisit<Digraph, Visitor> dfs(digraph, visitor);
    dfs.init();
    dfs.addSource(source);
    dfs.start();

    for (NodeIt it(digraph); it != INVALID; ++it) {
      if (!dfs.reached(it)) {
        return false;
      }
    }

    typedef ReverseDigraph<const Digraph> RDigraph;
    typedef typename RDigraph::NodeIt RNodeIt;
    RDigraph rdigraph(digraph);

    typedef DfsVisitor<RDigraph> RVisitor;
    RVisitor rvisitor;

    DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor);
    rdfs.init();
    rdfs.addSource(source);
    rdfs.start();

    for (RNodeIt it(rdigraph); it != INVALID; ++it) {
      if (!rdfs.reached(it)) {
        return false;
      }
    }

    return true;
  }

  /// \ingroup graph_properties
  ///
  /// \brief Count the number of strongly connected components of a
  /// directed graph
  ///
  /// This function counts the number of strongly connected components of
  /// the given directed graph.
  ///
  /// The strongly connected components are the classes of an
  /// equivalence relation on the nodes of a digraph. Two nodes are in
  /// the same class if they are connected with directed paths in both
  /// direction.
  ///
  /// \return The number of strongly connected components.
  /// \note By definition, the empty digraph has zero
  /// strongly connected components.
  ///
  /// \see stronglyConnected(), stronglyConnectedComponents()
  template <typename Digraph>
  int countStronglyConnectedComponents(const Digraph& digraph) {
    checkConcept<concepts::Digraph, Digraph>();

    using namespace _connectivity_bits;

    typedef typename Digraph::Node Node;
    typedef typename Digraph::Arc Arc;
    typedef typename Digraph::NodeIt NodeIt;
    typedef typename Digraph::ArcIt ArcIt;

    typedef std::vector<Node> Container;
    typedef typename Container::iterator Iterator;

    Container nodes(countNodes(digraph));
    typedef LeaveOrderVisitor<Digraph, Iterator> Visitor;
    Visitor visitor(nodes.begin());

    DfsVisit<Digraph, Visitor> dfs(digraph, visitor);
    dfs.init();
    for (NodeIt it(digraph); it != INVALID; ++it) {
      if (!dfs.reached(it)) {
        dfs.addSource(it);
        dfs.start();
      }
    }

    typedef typename Container::reverse_iterator RIterator;
    typedef ReverseDigraph<const Digraph> RDigraph;

    RDigraph rdigraph(digraph);

    typedef DfsVisitor<Digraph> RVisitor;
    RVisitor rvisitor;

    DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor);

    int compNum = 0;

    rdfs.init();
    for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
      if (!rdfs.reached(*it)) {
        rdfs.addSource(*it);
        rdfs.start();
        ++compNum;
      }
    }
    return compNum;
  }

  /// \ingroup graph_properties
  ///
  /// \brief Find the strongly connected components of a directed graph
  ///
  /// This function finds the strongly connected components of the given
  /// directed graph. In addition, the numbering of the components will
  /// satisfy that there is no arc going from a higher numbered component
  /// to a lower one (i.e. it provides a topological order of the components).
  ///
  /// The strongly connected components are the classes of an
  /// equivalence relation on the nodes of a digraph. Two nodes are in
  /// the same class if they are connected with directed paths in both
  /// direction.
  ///
  /// \image html strongly_connected_components.png
  /// \image latex strongly_connected_components.eps "Strongly connected components" width=\textwidth
  ///
  /// \param digraph The digraph.
  /// \retval compMap A writable node map. The values will be set from 0 to
  /// the number of the strongly connected components minus one. Each value
  /// of the map will be set exactly once, and the values of a certain
  /// component will be set continuously.
  /// \return The number of strongly connected components.
  /// \note By definition, the empty digraph has zero
  /// strongly connected components.
  ///
  /// \see stronglyConnected(), countStronglyConnectedComponents()
  template <typename Digraph, typename NodeMap>
  int stronglyConnectedComponents(const Digraph& digraph, NodeMap& compMap) {
    checkConcept<concepts::Digraph, Digraph>();
    typedef typename Digraph::Node Node;
    typedef typename Digraph::NodeIt NodeIt;
    checkConcept<concepts::WriteMap<Node, int>, NodeMap>();

    using namespace _connectivity_bits;

    typedef std::vector<Node> Container;
    typedef typename Container::iterator Iterator;

    Container nodes(countNodes(digraph));
    typedef LeaveOrderVisitor<Digraph, Iterator> Visitor;
    Visitor visitor(nodes.begin());

    DfsVisit<Digraph, Visitor> dfs(digraph, visitor);
    dfs.init();
    for (NodeIt it(digraph); it != INVALID; ++it) {
      if (!dfs.reached(it)) {
        dfs.addSource(it);
        dfs.start();
      }
    }

    typedef typename Container::reverse_iterator RIterator;
    typedef ReverseDigraph<const Digraph> RDigraph;

    RDigraph rdigraph(digraph);

    int compNum = 0;

    typedef FillMapVisitor<RDigraph, NodeMap> RVisitor;
    RVisitor rvisitor(compMap, compNum);

    DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor);

    rdfs.init();
    for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
      if (!rdfs.reached(*it)) {
        rdfs.addSource(*it);
        rdfs.start();
        ++compNum;
      }
    }
    return compNum;
  }

  /// \ingroup graph_properties
  ///
  /// \brief Find the cut arcs of the strongly connected components.
  ///
  /// This function finds the cut arcs of the strongly connected components
  /// of the given digraph.
  ///
  /// The strongly connected components are the classes of an
  /// equivalence relation on the nodes of a digraph. Two nodes are in
  /// the same class if they are connected with directed paths in both
  /// direction.
  /// The strongly connected components are separated by the cut arcs.
  ///
  /// \param digraph The digraph.
  /// \retval cutMap A writable arc map. The values will be set to \c true
  /// for the cut arcs (exactly once for each cut arc), and will not be
  /// changed for other arcs.
  /// \return The number of cut arcs.
  ///
  /// \see stronglyConnected(), stronglyConnectedComponents()
  template <typename Digraph, typename ArcMap>
  int stronglyConnectedCutArcs(const Digraph& digraph, ArcMap& cutMap) {
    checkConcept<concepts::Digraph, Digraph>();
    typedef typename Digraph::Node Node;
    typedef typename Digraph::Arc Arc;
    typedef typename Digraph::NodeIt NodeIt;
    checkConcept<concepts::WriteMap<Arc, bool>, ArcMap>();

    using namespace _connectivity_bits;

    typedef std::vector<Node> Container;
    typedef typename Container::iterator Iterator;

    Container nodes(countNodes(digraph));
    typedef LeaveOrderVisitor<Digraph, Iterator> Visitor;
    Visitor visitor(nodes.begin());

    DfsVisit<Digraph, Visitor> dfs(digraph, visitor);
    dfs.init();
    for (NodeIt it(digraph); it != INVALID; ++it) {
      if (!dfs.reached(it)) {
        dfs.addSource(it);
        dfs.start();
      }
    }

    typedef typename Container::reverse_iterator RIterator;
    typedef ReverseDigraph<const Digraph> RDigraph;

    RDigraph rdigraph(digraph);

    int cutNum = 0;

    typedef StronglyConnectedCutArcsVisitor<RDigraph, ArcMap> RVisitor;
    RVisitor rvisitor(rdigraph, cutMap, cutNum);

    DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor);

    rdfs.init();
    for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
      if (!rdfs.reached(*it)) {
        rdfs.addSource(*it);
        rdfs.start();
      }
    }
    return cutNum;
  }

  namespace _connectivity_bits {

    template <typename Digraph>
    class CountBiNodeConnectedComponentsVisitor : public DfsVisitor<Digraph> {
    public:
      typedef typename Digraph::Node Node;
      typedef typename Digraph::Arc Arc;
      typedef typename Digraph::Edge Edge;

      CountBiNodeConnectedComponentsVisitor(const Digraph& graph, int &compNum)
        : _graph(graph), _compNum(compNum),
          _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}

      void start(const Node& node) {
        _predMap.set(node, INVALID);
      }

      void reach(const Node& node) {
        _numMap.set(node, _num);
        _retMap.set(node, _num);
        ++_num;
      }

      void discover(const Arc& edge) {
        _predMap.set(_graph.target(edge), _graph.source(edge));
      }

      void examine(const Arc& edge) {
        if (_graph.source(edge) == _graph.target(edge) &&
            _graph.direction(edge)) {
          ++_compNum;
          return;
        }
        if (_predMap[_graph.source(edge)] == _graph.target(edge)) {
          return;
        }
        if (_retMap[_graph.source(edge)] > _numMap[_graph.target(edge)]) {
          _retMap.set(_graph.source(edge), _numMap[_graph.target(edge)]);
        }
      }

      void backtrack(const Arc& edge) {
        if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
          _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
        }
        if (_numMap[_graph.source(edge)] <= _retMap[_graph.target(edge)]) {
          ++_compNum;
        }
      }

    private:
      const Digraph& _graph;
      int& _compNum;

      typename Digraph::template NodeMap<int> _numMap;
      typename Digraph::template NodeMap<int> _retMap;
      typename Digraph::template NodeMap<Node> _predMap;
      int _num;
    };

    template <typename Digraph, typename ArcMap>
    class BiNodeConnectedComponentsVisitor : public DfsVisitor<Digraph> {
    public:
      typedef typename Digraph::Node Node;
      typedef typename Digraph::Arc Arc;
      typedef typename Digraph::Edge Edge;

      BiNodeConnectedComponentsVisitor(const Digraph& graph,
                                       ArcMap& compMap, int &compNum)
        : _graph(graph), _compMap(compMap), _compNum(compNum),
          _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}

      void start(const Node& node) {
        _predMap.set(node, INVALID);
      }

      void reach(const Node& node) {
        _numMap.set(node, _num);
        _retMap.set(node, _num);
        ++_num;
      }

      void discover(const Arc& edge) {
        Node target = _graph.target(edge);
        _predMap.set(target, edge);
        _edgeStack.push(edge);
      }

      void examine(const Arc& edge) {
        Node source = _graph.source(edge);
        Node target = _graph.target(edge);
        if (source == target && _graph.direction(edge)) {
          _compMap.set(edge, _compNum);
          ++_compNum;
          return;
        }
        if (_numMap[target] < _numMap[source]) {
          if (_predMap[source] != _graph.oppositeArc(edge)) {
            _edgeStack.push(edge);
          }
        }
        if (_predMap[source] != INVALID &&
            target == _graph.source(_predMap[source])) {
          return;
        }
        if (_retMap[source] > _numMap[target]) {
          _retMap.set(source, _numMap[target]);
        }
      }

      void backtrack(const Arc& edge) {
        Node source = _graph.source(edge);
        Node target = _graph.target(edge);
        if (_retMap[source] > _retMap[target]) {
          _retMap.set(source, _retMap[target]);
        }
        if (_numMap[source] <= _retMap[target]) {
          while (_edgeStack.top() != edge) {
            _compMap.set(_edgeStack.top(), _compNum);
            _edgeStack.pop();
          }
          _compMap.set(edge, _compNum);
          _edgeStack.pop();
          ++_compNum;
        }
      }

    private:
      const Digraph& _graph;
      ArcMap& _compMap;
      int& _compNum;

      typename Digraph::template NodeMap<int> _numMap;
      typename Digraph::template NodeMap<int> _retMap;
      typename Digraph::template NodeMap<Arc> _predMap;
      std::stack<Edge> _edgeStack;
      int _num;
    };


    template <typename Digraph, typename NodeMap>
    class BiNodeConnectedCutNodesVisitor : public DfsVisitor<Digraph> {
    public:
      typedef typename Digraph::Node Node;
      typedef typename Digraph::Arc Arc;
      typedef typename Digraph::Edge Edge;

      BiNodeConnectedCutNodesVisitor(const Digraph& graph, NodeMap& cutMap,
                                     int& cutNum)
        : _graph(graph), _cutMap(cutMap), _cutNum(cutNum),
          _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}

      void start(const Node& node) {
        _predMap.set(node, INVALID);
        rootCut = false;
      }

      void reach(const Node& node) {
        _numMap.set(node, _num);
        _retMap.set(node, _num);
        ++_num;
      }

      void discover(const Arc& edge) {
        _predMap.set(_graph.target(edge), _graph.source(edge));
      }

      void examine(const Arc& edge) {
        if (_graph.source(edge) == _graph.target(edge) &&
            _graph.direction(edge)) {
          if (!_cutMap[_graph.source(edge)]) {
            _cutMap.set(_graph.source(edge), true);
            ++_cutNum;
          }
          return;
        }
        if (_predMap[_graph.source(edge)] == _graph.target(edge)) return;
        if (_retMap[_graph.source(edge)] > _numMap[_graph.target(edge)]) {
          _retMap.set(_graph.source(edge), _numMap[_graph.target(edge)]);
        }
      }

      void backtrack(const Arc& edge) {
        if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
          _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
        }
        if (_numMap[_graph.source(edge)] <= _retMap[_graph.target(edge)]) {
          if (_predMap[_graph.source(edge)] != INVALID) {
            if (!_cutMap[_graph.source(edge)]) {
              _cutMap.set(_graph.source(edge), true);
              ++_cutNum;
            }
          } else if (rootCut) {
            if (!_cutMap[_graph.source(edge)]) {
              _cutMap.set(_graph.source(edge), true);
              ++_cutNum;
            }
          } else {
            rootCut = true;
          }
        }
      }

    private:
      const Digraph& _graph;
      NodeMap& _cutMap;
      int& _cutNum;

      typename Digraph::template NodeMap<int> _numMap;
      typename Digraph::template NodeMap<int> _retMap;
      typename Digraph::template NodeMap<Node> _predMap;
      std::stack<Edge> _edgeStack;
      int _num;
      bool rootCut;
    };

  }

  template <typename Graph>
  int countBiNodeConnectedComponents(const Graph& graph);

  /// \ingroup graph_properties
  ///
  /// \brief Check whether an undirected graph is bi-node-connected.
  ///
  /// This function checks whether the given undirected graph is
  /// bi-node-connected, i.e. a connected graph without articulation
  /// node.
  ///
  /// \return \c true if the graph bi-node-connected.
  ///
  /// \note By definition,
  /// \li a graph consisting of zero or one node is bi-node-connected,
  /// \li a graph consisting of two isolated nodes
  /// is \e not bi-node-connected and
  /// \li a graph consisting of two nodes connected by an edge
  /// is bi-node-connected.
  ///
  /// \see countBiNodeConnectedComponents(), biNodeConnectedComponents()
  template <typename Graph>
  bool biNodeConnected(const Graph& graph) {
    bool hasNonIsolated = false, hasIsolated = false;
    for (typename Graph::NodeIt n(graph); n != INVALID; ++n) {
      if (typename Graph::OutArcIt(graph, n) == INVALID) {
        if (hasIsolated || hasNonIsolated) {
          return false;
        } else {
          hasIsolated = true;
        }
      } else {
        if (hasIsolated) {
          return false;
        } else {
          hasNonIsolated = true;
        }
      }
    }
    return countBiNodeConnectedComponents(graph) <= 1;
  }

  /// \ingroup graph_properties
  ///
  /// \brief Count the number of bi-node-connected components of an
  /// undirected graph.
  ///
  /// This function counts the number of bi-node-connected components of
  /// the given undirected graph.
  ///
  /// The bi-node-connected components are the classes of an equivalence
  /// relation on the edges of a undirected graph. Two edges are in the
  /// same class if they are on same circle.
  ///
  /// \return The number of bi-node-connected components.
  ///
  /// \see biNodeConnected(), biNodeConnectedComponents()
  template <typename Graph>
  int countBiNodeConnectedComponents(const Graph& graph) {
    checkConcept<concepts::Graph, Graph>();
    typedef typename Graph::NodeIt NodeIt;

    using namespace _connectivity_bits;

    typedef CountBiNodeConnectedComponentsVisitor<Graph> Visitor;

    int compNum = 0;
    Visitor visitor(graph, compNum);

    DfsVisit<Graph, Visitor> dfs(graph, visitor);
    dfs.init();

    for (NodeIt it(graph); it != INVALID; ++it) {
      if (!dfs.reached(it)) {
        dfs.addSource(it);
        dfs.start();
      }
    }
    return compNum;
  }

  /// \ingroup graph_properties
  ///
  /// \brief Find the bi-node-connected components of an undirected graph.
  ///
  /// This function finds the bi-node-connected components of the given
  /// undirected graph.
  ///
  /// The bi-node-connected components are the classes of an equivalence
  /// relation on the edges of a undirected graph. Two edges are in the
  /// same class if they are on same circle.
  ///
  /// \image html node_biconnected_components.png
  /// \image latex node_biconnected_components.eps "bi-node-connected components" width=\textwidth
  ///
  /// \param graph The undirected graph.
  /// \retval compMap A writable edge map. The values will be set from 0
  /// to the number of the bi-node-connected components minus one. Each
  /// value of the map will be set exactly once, and the values of a
  /// certain component will be set continuously.
  /// \return The number of bi-node-connected components.
  ///
  /// \see biNodeConnected(), countBiNodeConnectedComponents()
  template <typename Graph, typename EdgeMap>
  int biNodeConnectedComponents(const Graph& graph,
                                EdgeMap& compMap) {
    checkConcept<concepts::Graph, Graph>();
    typedef typename Graph::NodeIt NodeIt;
    typedef typename Graph::Edge Edge;
    checkConcept<concepts::WriteMap<Edge, int>, EdgeMap>();

    using namespace _connectivity_bits;

    typedef BiNodeConnectedComponentsVisitor<Graph, EdgeMap> Visitor;

    int compNum = 0;
    Visitor visitor(graph, compMap, compNum);

    DfsVisit<Graph, Visitor> dfs(graph, visitor);
    dfs.init();

    for (NodeIt it(graph); it != INVALID; ++it) {
      if (!dfs.reached(it)) {
        dfs.addSource(it);
        dfs.start();
      }
    }
    return compNum;
  }

  /// \ingroup graph_properties
  ///
  /// \brief Find the bi-node-connected cut nodes in an undirected graph.
  ///
  /// This function finds the bi-node-connected cut nodes in the given
  /// undirected graph.
  ///
  /// The bi-node-connected components are the classes of an equivalence
  /// relation on the edges of a undirected graph. Two edges are in the
  /// same class if they are on same circle.
  /// The bi-node-connected components are separted by the cut nodes of
  /// the components.
  ///
  /// \param graph The undirected graph.
  /// \retval cutMap A writable node map. The values will be set to
  /// \c true for the nodes that separate two or more components
  /// (exactly once for each cut node), and will not be changed for
  /// other nodes.
  /// \return The number of the cut nodes.
  ///
  /// \see biNodeConnected(), biNodeConnectedComponents()
  template <typename Graph, typename NodeMap>
  int biNodeConnectedCutNodes(const Graph& graph, NodeMap& cutMap) {
    checkConcept<concepts::Graph, Graph>();
    typedef typename Graph::Node Node;
    typedef typename Graph::NodeIt NodeIt;
    checkConcept<concepts::WriteMap<Node, bool>, NodeMap>();

    using namespace _connectivity_bits;

    typedef BiNodeConnectedCutNodesVisitor<Graph, NodeMap> Visitor;

    int cutNum = 0;
    Visitor visitor(graph, cutMap, cutNum);

    DfsVisit<Graph, Visitor> dfs(graph, visitor);
    dfs.init();

    for (NodeIt it(graph); it != INVALID; ++it) {
      if (!dfs.reached(it)) {
        dfs.addSource(it);
        dfs.start();
      }
    }
    return cutNum;
  }

  namespace _connectivity_bits {

    template <typename Digraph>
    class CountBiEdgeConnectedComponentsVisitor : public DfsVisitor<Digraph> {
    public:
      typedef typename Digraph::Node Node;
      typedef typename Digraph::Arc Arc;
      typedef typename Digraph::Edge Edge;

      CountBiEdgeConnectedComponentsVisitor(const Digraph& graph, int &compNum)
        : _graph(graph), _compNum(compNum),
          _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}

      void start(const Node& node) {
        _predMap.set(node, INVALID);
      }

      void reach(const Node& node) {
        _numMap.set(node, _num);
        _retMap.set(node, _num);
        ++_num;
      }

      void leave(const Node& node) {
        if (_numMap[node] <= _retMap[node]) {
          ++_compNum;
        }
      }

      void discover(const Arc& edge) {
        _predMap.set(_graph.target(edge), edge);
      }

      void examine(const Arc& edge) {
        if (_predMap[_graph.source(edge)] == _graph.oppositeArc(edge)) {
          return;
        }
        if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
          _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
        }
      }

      void backtrack(const Arc& edge) {
        if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
          _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
        }
      }

    private:
      const Digraph& _graph;
      int& _compNum;

      typename Digraph::template NodeMap<int> _numMap;
      typename Digraph::template NodeMap<int> _retMap;
      typename Digraph::template NodeMap<Arc> _predMap;
      int _num;
    };

    template <typename Digraph, typename NodeMap>
    class BiEdgeConnectedComponentsVisitor : public DfsVisitor<Digraph> {
    public:
      typedef typename Digraph::Node Node;
      typedef typename Digraph::Arc Arc;
      typedef typename Digraph::Edge Edge;

      BiEdgeConnectedComponentsVisitor(const Digraph& graph,
                                       NodeMap& compMap, int &compNum)
        : _graph(graph), _compMap(compMap), _compNum(compNum),
          _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}

      void start(const Node& node) {
        _predMap.set(node, INVALID);
      }

      void reach(const Node& node) {
        _numMap.set(node, _num);
        _retMap.set(node, _num);
        _nodeStack.push(node);
        ++_num;
      }

      void leave(const Node& node) {
        if (_numMap[node] <= _retMap[node]) {
          while (_nodeStack.top() != node) {
            _compMap.set(_nodeStack.top(), _compNum);
            _nodeStack.pop();
          }
          _compMap.set(node, _compNum);
          _nodeStack.pop();
          ++_compNum;
        }
      }

      void discover(const Arc& edge) {
        _predMap.set(_graph.target(edge), edge);
      }

      void examine(const Arc& edge) {
        if (_predMap[_graph.source(edge)] == _graph.oppositeArc(edge)) {
          return;
        }
        if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
          _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
        }
      }

      void backtrack(const Arc& edge) {
        if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
          _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
        }
      }

    private:
      const Digraph& _graph;
      NodeMap& _compMap;
      int& _compNum;

      typename Digraph::template NodeMap<int> _numMap;
      typename Digraph::template NodeMap<int> _retMap;
      typename Digraph::template NodeMap<Arc> _predMap;
      std::stack<Node> _nodeStack;
      int _num;
    };


    template <typename Digraph, typename ArcMap>
    class BiEdgeConnectedCutEdgesVisitor : public DfsVisitor<Digraph> {
    public:
      typedef typename Digraph::Node Node;
      typedef typename Digraph::Arc Arc;
      typedef typename Digraph::Edge Edge;

      BiEdgeConnectedCutEdgesVisitor(const Digraph& graph,
                                     ArcMap& cutMap, int &cutNum)
        : _graph(graph), _cutMap(cutMap), _cutNum(cutNum),
          _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}

      void start(const Node& node) {
        _predMap[node] = INVALID;
      }

      void reach(const Node& node) {
        _numMap.set(node, _num);
        _retMap.set(node, _num);
        ++_num;
      }

      void leave(const Node& node) {
        if (_numMap[node] <= _retMap[node]) {
          if (_predMap[node] != INVALID) {
            _cutMap.set(_predMap[node], true);
            ++_cutNum;
          }
        }
      }

      void discover(const Arc& edge) {
        _predMap.set(_graph.target(edge), edge);
      }

      void examine(const Arc& edge) {
        if (_predMap[_graph.source(edge)] == _graph.oppositeArc(edge)) {
          return;
        }
        if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
          _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
        }
      }

      void backtrack(const Arc& edge) {
        if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
          _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
        }
      }

    private:
      const Digraph& _graph;
      ArcMap& _cutMap;
      int& _cutNum;

      typename Digraph::template NodeMap<int> _numMap;
      typename Digraph::template NodeMap<int> _retMap;
      typename Digraph::template NodeMap<Arc> _predMap;
      int _num;
    };
  }

  template <typename Graph>
  int countBiEdgeConnectedComponents(const Graph& graph);

  /// \ingroup graph_properties
  ///
  /// \brief Check whether an undirected graph is bi-edge-connected.
  ///
  /// This function checks whether the given undirected graph is
  /// bi-edge-connected, i.e. any two nodes are connected with at least
  /// two edge-disjoint paths.
  ///
  /// \return \c true if the graph is bi-edge-connected.
  /// \note By definition, the empty graph is bi-edge-connected.
  ///
  /// \see countBiEdgeConnectedComponents(), biEdgeConnectedComponents()
  template <typename Graph>
  bool biEdgeConnected(const Graph& graph) {
    return countBiEdgeConnectedComponents(graph) <= 1;
  }

  /// \ingroup graph_properties
  ///
  /// \brief Count the number of bi-edge-connected components of an
  /// undirected graph.
  ///
  /// This function counts the number of bi-edge-connected components of
  /// the given undirected graph.
  ///
  /// The bi-edge-connected components are the classes of an equivalence
  /// relation on the nodes of an undirected graph. Two nodes are in the
  /// same class if they are connected with at least two edge-disjoint
  /// paths.
  ///
  /// \return The number of bi-edge-connected components.
  ///
  /// \see biEdgeConnected(), biEdgeConnectedComponents()
  template <typename Graph>
  int countBiEdgeConnectedComponents(const Graph& graph) {
    checkConcept<concepts::Graph, Graph>();
    typedef typename Graph::NodeIt NodeIt;

    using namespace _connectivity_bits;

    typedef CountBiEdgeConnectedComponentsVisitor<Graph> Visitor;

    int compNum = 0;
    Visitor visitor(graph, compNum);

    DfsVisit<Graph, Visitor> dfs(graph, visitor);
    dfs.init();

    for (NodeIt it(graph); it != INVALID; ++it) {
      if (!dfs.reached(it)) {
        dfs.addSource(it);
        dfs.start();
      }
    }
    return compNum;
  }

  /// \ingroup graph_properties
  ///
  /// \brief Find the bi-edge-connected components of an undirected graph.
  ///
  /// This function finds the bi-edge-connected components of the given
  /// undirected graph.
  ///
  /// The bi-edge-connected components are the classes of an equivalence
  /// relation on the nodes of an undirected graph. Two nodes are in the
  /// same class if they are connected with at least two edge-disjoint
  /// paths.
  ///
  /// \image html edge_biconnected_components.png
  /// \image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth
  ///
  /// \param graph The undirected graph.
  /// \retval compMap A writable node map. The values will be set from 0 to
  /// the number of the bi-edge-connected components minus one. Each value
  /// of the map will be set exactly once, and the values of a certain
  /// component will be set continuously.
  /// \return The number of bi-edge-connected components.
  ///
  /// \see biEdgeConnected(), countBiEdgeConnectedComponents()
  template <typename Graph, typename NodeMap>
  int biEdgeConnectedComponents(const Graph& graph, NodeMap& compMap) {
    checkConcept<concepts::Graph, Graph>();
    typedef typename Graph::NodeIt NodeIt;
    typedef typename Graph::Node Node;
    checkConcept<concepts::WriteMap<Node, int>, NodeMap>();

    using namespace _connectivity_bits;

    typedef BiEdgeConnectedComponentsVisitor<Graph, NodeMap> Visitor;

    int compNum = 0;
    Visitor visitor(graph, compMap, compNum);

    DfsVisit<Graph, Visitor> dfs(graph, visitor);
    dfs.init();

    for (NodeIt it(graph); it != INVALID; ++it) {
      if (!dfs.reached(it)) {
        dfs.addSource(it);
        dfs.start();
      }
    }
    return compNum;
  }

  /// \ingroup graph_properties
  ///
  /// \brief Find the bi-edge-connected cut edges in an undirected graph.
  ///
  /// This function finds the bi-edge-connected cut edges in the given
  /// undirected graph.
  ///
  /// The bi-edge-connected components are the classes of an equivalence
  /// relation on the nodes of an undirected graph. Two nodes are in the
  /// same class if they are connected with at least two edge-disjoint
  /// paths.
  /// The bi-edge-connected components are separted by the cut edges of
  /// the components.
  ///
  /// \param graph The undirected graph.
  /// \retval cutMap A writable edge map. The values will be set to \c true
  /// for the cut edges (exactly once for each cut edge), and will not be
  /// changed for other edges.
  /// \return The number of cut edges.
  ///
  /// \see biEdgeConnected(), biEdgeConnectedComponents()
  template <typename Graph, typename EdgeMap>
  int biEdgeConnectedCutEdges(const Graph& graph, EdgeMap& cutMap) {
    checkConcept<concepts::Graph, Graph>();
    typedef typename Graph::NodeIt NodeIt;
    typedef typename Graph::Edge Edge;
    checkConcept<concepts::WriteMap<Edge, bool>, EdgeMap>();

    using namespace _connectivity_bits;

    typedef BiEdgeConnectedCutEdgesVisitor<Graph, EdgeMap> Visitor;

    int cutNum = 0;
    Visitor visitor(graph, cutMap, cutNum);

    DfsVisit<Graph, Visitor> dfs(graph, visitor);
    dfs.init();

    for (NodeIt it(graph); it != INVALID; ++it) {
      if (!dfs.reached(it)) {
        dfs.addSource(it);
        dfs.start();
      }
    }
    return cutNum;
  }


  namespace _connectivity_bits {

    template <typename Digraph, typename IntNodeMap>
    class TopologicalSortVisitor : public DfsVisitor<Digraph> {
    public:
      typedef typename Digraph::Node Node;
      typedef typename Digraph::Arc edge;

      TopologicalSortVisitor(IntNodeMap& order, int num)
        : _order(order), _num(num) {}

      void leave(const Node& node) {
        _order.set(node, --_num);
      }

    private:
      IntNodeMap& _order;
      int _num;
    };

  }

  /// \ingroup graph_properties
  ///
  /// \brief Check whether a digraph is DAG.
  ///
  /// This function checks whether the given digraph is DAG, i.e.
  /// \e Directed \e Acyclic \e Graph.
  /// \return \c true if there is no directed cycle in the digraph.
  /// \see acyclic()
  template <typename Digraph>
  bool dag(const Digraph& digraph) {

    checkConcept<concepts::Digraph, Digraph>();

    typedef typename Digraph::Node Node;
    typedef typename Digraph::NodeIt NodeIt;
    typedef typename Digraph::Arc Arc;

    typedef typename Digraph::template NodeMap<bool> ProcessedMap;

    typename Dfs<Digraph>::template SetProcessedMap<ProcessedMap>::
      Create dfs(digraph);

    ProcessedMap processed(digraph);
    dfs.processedMap(processed);

    dfs.init();
    for (NodeIt it(digraph); it != INVALID; ++it) {
      if (!dfs.reached(it)) {
        dfs.addSource(it);
        while (!dfs.emptyQueue()) {
          Arc arc = dfs.nextArc();
          Node target = digraph.target(arc);
          if (dfs.reached(target) && !processed[target]) {
            return false;
          }
          dfs.processNextArc();
        }
      }
    }
    return true;
  }

  /// \ingroup graph_properties
  ///
  /// \brief Sort the nodes of a DAG into topolgical order.
  ///
  /// This function sorts the nodes of the given acyclic digraph (DAG)
  /// into topolgical order.
  ///
  /// \param digraph The digraph, which must be DAG.
  /// \retval order A writable node map. The values will be set from 0 to
  /// the number of the nodes in the digraph minus one. Each value of the
  /// map will be set exactly once, and the values will be set descending
  /// order.
  ///
  /// \see dag(), checkedTopologicalSort()
  template <typename Digraph, typename NodeMap>
  void topologicalSort(const Digraph& digraph, NodeMap& order) {
    using namespace _connectivity_bits;

    checkConcept<concepts::Digraph, Digraph>();
    checkConcept<concepts::WriteMap<typename Digraph::Node, int>, NodeMap>();

    typedef typename Digraph::Node Node;
    typedef typename Digraph::NodeIt NodeIt;
    typedef typename Digraph::Arc Arc;

    TopologicalSortVisitor<Digraph, NodeMap>
      visitor(order, countNodes(digraph));

    DfsVisit<Digraph, TopologicalSortVisitor<Digraph, NodeMap> >
      dfs(digraph, visitor);

    dfs.init();
    for (NodeIt it(digraph); it != INVALID; ++it) {
      if (!dfs.reached(it)) {
        dfs.addSource(it);
        dfs.start();
      }
    }
  }

  /// \ingroup graph_properties
  ///
  /// \brief Sort the nodes of a DAG into topolgical order.
  ///
  /// This function sorts the nodes of the given acyclic digraph (DAG)
  /// into topolgical order and also checks whether the given digraph
  /// is DAG.
  ///
  /// \param digraph The digraph.
  /// \retval order A readable and writable node map. The values will be
  /// set from 0 to the number of the nodes in the digraph minus one.
  /// Each value of the map will be set exactly once, and the values will
  /// be set descending order.
  /// \return \c false if the digraph is not DAG.
  ///
  /// \see dag(), topologicalSort()
  template <typename Digraph, typename NodeMap>
  bool checkedTopologicalSort(const Digraph& digraph, NodeMap& order) {
    using namespace _connectivity_bits;

    checkConcept<concepts::Digraph, Digraph>();
    checkConcept<concepts::ReadWriteMap<typename Digraph::Node, int>,
      NodeMap>();

    typedef typename Digraph::Node Node;
    typedef typename Digraph::NodeIt NodeIt;
    typedef typename Digraph::Arc Arc;

    for (NodeIt it(digraph); it != INVALID; ++it) {
      order.set(it, -1);
    }

    TopologicalSortVisitor<Digraph, NodeMap>
      visitor(order, countNodes(digraph));

    DfsVisit<Digraph, TopologicalSortVisitor<Digraph, NodeMap> >
      dfs(digraph, visitor);

    dfs.init();
    for (NodeIt it(digraph); it != INVALID; ++it) {
      if (!dfs.reached(it)) {
        dfs.addSource(it);
        while (!dfs.emptyQueue()) {
           Arc arc = dfs.nextArc();
           Node target = digraph.target(arc);
           if (dfs.reached(target) && order[target] == -1) {
             return false;
           }
           dfs.processNextArc();
         }
      }
    }
    return true;
  }

  /// \ingroup graph_properties
  ///
  /// \brief Check whether an undirected graph is acyclic.
  ///
  /// This function checks whether the given undirected graph is acyclic.
  /// \return \c true if there is no cycle in the graph.
  /// \see dag()
  template <typename Graph>
  bool acyclic(const Graph& graph) {
    checkConcept<concepts::Graph, Graph>();
    typedef typename Graph::Node Node;
    typedef typename Graph::NodeIt NodeIt;
    typedef typename Graph::Arc Arc;
    Dfs<Graph> dfs(graph);
    dfs.init();
    for (NodeIt it(graph); it != INVALID; ++it) {
      if (!dfs.reached(it)) {
        dfs.addSource(it);
        while (!dfs.emptyQueue()) {
          Arc arc = dfs.nextArc();
          Node source = graph.source(arc);
          Node target = graph.target(arc);
          if (dfs.reached(target) &&
              dfs.predArc(source) != graph.oppositeArc(arc)) {
            return false;
          }
          dfs.processNextArc();
        }
      }
    }
    return true;
  }

  /// \ingroup graph_properties
  ///
  /// \brief Check whether an undirected graph is tree.
  ///
  /// This function checks whether the given undirected graph is tree.
  /// \return \c true if the graph is acyclic and connected.
  /// \see acyclic(), connected()
  template <typename Graph>
  bool tree(const Graph& graph) {
    checkConcept<concepts::Graph, Graph>();
    typedef typename Graph::Node Node;
    typedef typename Graph::NodeIt NodeIt;
    typedef typename Graph::Arc Arc;
    if (NodeIt(graph) == INVALID) return true;
    Dfs<Graph> dfs(graph);
    dfs.init();
    dfs.addSource(NodeIt(graph));
    while (!dfs.emptyQueue()) {
      Arc arc = dfs.nextArc();
      Node source = graph.source(arc);
      Node target = graph.target(arc);
      if (dfs.reached(target) &&
          dfs.predArc(source) != graph.oppositeArc(arc)) {
        return false;
      }
      dfs.processNextArc();
    }
    for (NodeIt it(graph); it != INVALID; ++it) {
      if (!dfs.reached(it)) {
        return false;
      }
    }
    return true;
  }

  namespace _connectivity_bits {

    template <typename Digraph>
    class BipartiteVisitor : public BfsVisitor<Digraph> {
    public:
      typedef typename Digraph::Arc Arc;
      typedef typename Digraph::Node Node;

      BipartiteVisitor(const Digraph& graph, bool& bipartite)
        : _graph(graph), _part(graph), _bipartite(bipartite) {}

      void start(const Node& node) {
        _part[node] = true;
      }
      void discover(const Arc& edge) {
        _part.set(_graph.target(edge), !_part[_graph.source(edge)]);
      }
      void examine(const Arc& edge) {
        _bipartite = _bipartite &&
          _part[_graph.target(edge)] != _part[_graph.source(edge)];
      }

    private:

      const Digraph& _graph;
      typename Digraph::template NodeMap<bool> _part;
      bool& _bipartite;
    };

    template <typename Digraph, typename PartMap>
    class BipartitePartitionsVisitor : public BfsVisitor<Digraph> {
    public:
      typedef typename Digraph::Arc Arc;
      typedef typename Digraph::Node Node;

      BipartitePartitionsVisitor(const Digraph& graph,
                                 PartMap& part, bool& bipartite)
        : _graph(graph), _part(part), _bipartite(bipartite) {}

      void start(const Node& node) {
        _part.set(node, true);
      }
      void discover(const Arc& edge) {
        _part.set(_graph.target(edge), !_part[_graph.source(edge)]);
      }
      void examine(const Arc& edge) {
        _bipartite = _bipartite &&
          _part[_graph.target(edge)] != _part[_graph.source(edge)];
      }

    private:

      const Digraph& _graph;
      PartMap& _part;
      bool& _bipartite;
    };
  }

  /// \ingroup graph_properties
  ///
  /// \brief Check whether an undirected graph is bipartite.
  ///
  /// The function checks whether the given undirected graph is bipartite.
  /// \return \c true if the graph is bipartite.
  ///
  /// \see bipartitePartitions()
  template<typename Graph>
  bool bipartite(const Graph &graph){
    using namespace _connectivity_bits;

    checkConcept<concepts::Graph, Graph>();

    typedef typename Graph::NodeIt NodeIt;
    typedef typename Graph::ArcIt ArcIt;

    bool bipartite = true;

    BipartiteVisitor<Graph>
      visitor(graph, bipartite);
    BfsVisit<Graph, BipartiteVisitor<Graph> >
      bfs(graph, visitor);
    bfs.init();
    for(NodeIt it(graph); it != INVALID; ++it) {
      if(!bfs.reached(it)){
        bfs.addSource(it);
        while (!bfs.emptyQueue()) {
          bfs.processNextNode();
          if (!bipartite) return false;
        }
      }
    }
    return true;
  }

  /// \ingroup graph_properties
  ///
  /// \brief Find the bipartite partitions of an undirected graph.
  ///
  /// This function checks whether the given undirected graph is bipartite
  /// and gives back the bipartite partitions.
  ///
  /// \image html bipartite_partitions.png
  /// \image latex bipartite_partitions.eps "Bipartite partititions" width=\textwidth
  ///
  /// \param graph The undirected graph.
  /// \retval partMap A writable node map of \c bool (or convertible) value
  /// type. The values will be set to \c true for one component and
  /// \c false for the other one.
  /// \return \c true if the graph is bipartite, \c false otherwise.
  ///
  /// \see bipartite()
  template<typename Graph, typename NodeMap>
  bool bipartitePartitions(const Graph &graph, NodeMap &partMap){
    using namespace _connectivity_bits;

    checkConcept<concepts::Graph, Graph>();
    checkConcept<concepts::WriteMap<typename Graph::Node, bool>, NodeMap>();

    typedef typename Graph::Node Node;
    typedef typename Graph::NodeIt NodeIt;
    typedef typename Graph::ArcIt ArcIt;

    bool bipartite = true;

    BipartitePartitionsVisitor<Graph, NodeMap>
      visitor(graph, partMap, bipartite);
    BfsVisit<Graph, BipartitePartitionsVisitor<Graph, NodeMap> >
      bfs(graph, visitor);
    bfs.init();
    for(NodeIt it(graph); it != INVALID; ++it) {
      if(!bfs.reached(it)){
        bfs.addSource(it);
        while (!bfs.emptyQueue()) {
          bfs.processNextNode();
          if (!bipartite) return false;
        }
      }
    }
    return true;
  }

  /// \ingroup graph_properties
  ///
  /// \brief Check whether the given graph contains no loop arcs/edges.
  ///
  /// This function returns \c true if there are no loop arcs/edges in
  /// the given graph. It works for both directed and undirected graphs.
  template <typename Graph>
  bool loopFree(const Graph& graph) {
    for (typename Graph::ArcIt it(graph); it != INVALID; ++it) {
      if (graph.source(it) == graph.target(it)) return false;
    }
    return true;
  }

  /// \ingroup graph_properties
  ///
  /// \brief Check whether the given graph contains no parallel arcs/edges.
  ///
  /// This function returns \c true if there are no parallel arcs/edges in
  /// the given graph. It works for both directed and undirected graphs.
  template <typename Graph>
  bool parallelFree(const Graph& graph) {
    typename Graph::template NodeMap<int> reached(graph, 0);
    int cnt = 1;
    for (typename Graph::NodeIt n(graph); n != INVALID; ++n) {
      for (typename Graph::OutArcIt a(graph, n); a != INVALID; ++a) {
        if (reached[graph.target(a)] == cnt) return false;
        reached[graph.target(a)] = cnt;
      }
      ++cnt;
    }
    return true;
  }

  /// \ingroup graph_properties
  ///
  /// \brief Check whether the given graph is simple.
  ///
  /// This function returns \c true if the given graph is simple, i.e.
  /// it contains no loop arcs/edges and no parallel arcs/edges.
  /// The function works for both directed and undirected graphs.
  /// \see loopFree(), parallelFree()
  template <typename Graph>
  bool simpleGraph(const Graph& graph) {
    typename Graph::template NodeMap<int> reached(graph, 0);
    int cnt = 1;
    for (typename Graph::NodeIt n(graph); n != INVALID; ++n) {
      reached[n] = cnt;
      for (typename Graph::OutArcIt a(graph, n); a != INVALID; ++a) {
        if (reached[graph.target(a)] == cnt) return false;
        reached[graph.target(a)] = cnt;
      }
      ++cnt;
    }
    return true;
  }

} //namespace lemon

#endif //LEMON_CONNECTIVITY_H