Welcome to mirror list, hosted at ThFree Co, Russian Federation.

dijkstra.h « lemon « lemon-1.3.1 « 3rd « quadriflow « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 1564a03e6ec284d43e18429f278135385276fa54 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
/* -*- mode: C++; indent-tabs-mode: nil; -*-
 *
 * This file is a part of LEMON, a generic C++ optimization library.
 *
 * Copyright (C) 2003-2013
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
 *
 * Permission to use, modify and distribute this software is granted
 * provided that this copyright notice appears in all copies. For
 * precise terms see the accompanying LICENSE file.
 *
 * This software is provided "AS IS" with no warranty of any kind,
 * express or implied, and with no claim as to its suitability for any
 * purpose.
 *
 */

#ifndef LEMON_DIJKSTRA_H
#define LEMON_DIJKSTRA_H

///\ingroup shortest_path
///\file
///\brief Dijkstra algorithm.

#include <limits>
#include <lemon/list_graph.h>
#include <lemon/bin_heap.h>
#include <lemon/bits/path_dump.h>
#include <lemon/core.h>
#include <lemon/error.h>
#include <lemon/maps.h>
#include <lemon/path.h>

namespace lemon {

  /// \brief Default operation traits for the Dijkstra algorithm class.
  ///
  /// This operation traits class defines all computational operations and
  /// constants which are used in the Dijkstra algorithm.
  template <typename V>
  struct DijkstraDefaultOperationTraits {
    /// \e
    typedef V Value;
    /// \brief Gives back the zero value of the type.
    static Value zero() {
      return static_cast<Value>(0);
    }
    /// \brief Gives back the sum of the given two elements.
    static Value plus(const Value& left, const Value& right) {
      return left + right;
    }
    /// \brief Gives back true only if the first value is less than the second.
    static bool less(const Value& left, const Value& right) {
      return left < right;
    }
  };

  ///Default traits class of Dijkstra class.

  ///Default traits class of Dijkstra class.
  ///\tparam GR The type of the digraph.
  ///\tparam LEN The type of the length map.
  template<typename GR, typename LEN>
  struct DijkstraDefaultTraits
  {
    ///The type of the digraph the algorithm runs on.
    typedef GR Digraph;

    ///The type of the map that stores the arc lengths.

    ///The type of the map that stores the arc lengths.
    ///It must conform to the \ref concepts::ReadMap "ReadMap" concept.
    typedef LEN LengthMap;
    ///The type of the arc lengths.
    typedef typename LEN::Value Value;

    /// Operation traits for %Dijkstra algorithm.

    /// This class defines the operations that are used in the algorithm.
    /// \see DijkstraDefaultOperationTraits
    typedef DijkstraDefaultOperationTraits<Value> OperationTraits;

    /// The cross reference type used by the heap.

    /// The cross reference type used by the heap.
    /// Usually it is \c Digraph::NodeMap<int>.
    typedef typename Digraph::template NodeMap<int> HeapCrossRef;
    ///Instantiates a \c HeapCrossRef.

    ///This function instantiates a \ref HeapCrossRef.
    /// \param g is the digraph, to which we would like to define the
    /// \ref HeapCrossRef.
    static HeapCrossRef *createHeapCrossRef(const Digraph &g)
    {
      return new HeapCrossRef(g);
    }

    ///The heap type used by the %Dijkstra algorithm.

    ///The heap type used by the Dijkstra algorithm.
    ///
    ///\sa BinHeap
    ///\sa Dijkstra
    typedef BinHeap<typename LEN::Value, HeapCrossRef, std::less<Value> > Heap;
    ///Instantiates a \c Heap.

    ///This function instantiates a \ref Heap.
    static Heap *createHeap(HeapCrossRef& r)
    {
      return new Heap(r);
    }

    ///\brief The type of the map that stores the predecessor
    ///arcs of the shortest paths.
    ///
    ///The type of the map that stores the predecessor
    ///arcs of the shortest paths.
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
    typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
    ///Instantiates a \c PredMap.

    ///This function instantiates a \ref PredMap.
    ///\param g is the digraph, to which we would like to define the
    ///\ref PredMap.
    static PredMap *createPredMap(const Digraph &g)
    {
      return new PredMap(g);
    }

    ///The type of the map that indicates which nodes are processed.

    ///The type of the map that indicates which nodes are processed.
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
    ///By default, it is a NullMap.
    typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
    ///Instantiates a \c ProcessedMap.

    ///This function instantiates a \ref ProcessedMap.
    ///\param g is the digraph, to which
    ///we would like to define the \ref ProcessedMap.
#ifdef DOXYGEN
    static ProcessedMap *createProcessedMap(const Digraph &g)
#else
    static ProcessedMap *createProcessedMap(const Digraph &)
#endif
    {
      return new ProcessedMap();
    }

    ///The type of the map that stores the distances of the nodes.

    ///The type of the map that stores the distances of the nodes.
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
    typedef typename Digraph::template NodeMap<typename LEN::Value> DistMap;
    ///Instantiates a \c DistMap.

    ///This function instantiates a \ref DistMap.
    ///\param g is the digraph, to which we would like to define
    ///the \ref DistMap.
    static DistMap *createDistMap(const Digraph &g)
    {
      return new DistMap(g);
    }
  };

  ///%Dijkstra algorithm class.

  /// \ingroup shortest_path
  ///This class provides an efficient implementation of the %Dijkstra algorithm.
  ///
  ///The %Dijkstra algorithm solves the single-source shortest path problem
  ///when all arc lengths are non-negative. If there are negative lengths,
  ///the BellmanFord algorithm should be used instead.
  ///
  ///The arc lengths are passed to the algorithm using a
  ///\ref concepts::ReadMap "ReadMap",
  ///so it is easy to change it to any kind of length.
  ///The type of the length is determined by the
  ///\ref concepts::ReadMap::Value "Value" of the length map.
  ///It is also possible to change the underlying priority heap.
  ///
  ///There is also a \ref dijkstra() "function-type interface" for the
  ///%Dijkstra algorithm, which is convenient in the simplier cases and
  ///it can be used easier.
  ///
  ///\tparam GR The type of the digraph the algorithm runs on.
  ///The default type is \ref ListDigraph.
  ///\tparam LEN A \ref concepts::ReadMap "readable" arc map that specifies
  ///the lengths of the arcs.
  ///It is read once for each arc, so the map may involve in
  ///relatively time consuming process to compute the arc lengths if
  ///it is necessary. The default map type is \ref
  ///concepts::Digraph::ArcMap "GR::ArcMap<int>".
  ///\tparam TR The traits class that defines various types used by the
  ///algorithm. By default, it is \ref DijkstraDefaultTraits
  ///"DijkstraDefaultTraits<GR, LEN>".
  ///In most cases, this parameter should not be set directly,
  ///consider to use the named template parameters instead.
#ifdef DOXYGEN
  template <typename GR, typename LEN, typename TR>
#else
  template <typename GR=ListDigraph,
            typename LEN=typename GR::template ArcMap<int>,
            typename TR=DijkstraDefaultTraits<GR,LEN> >
#endif
  class Dijkstra {
  public:

    ///The type of the digraph the algorithm runs on.
    typedef typename TR::Digraph Digraph;

    ///The type of the arc lengths.
    typedef typename TR::Value Value;
    ///The type of the map that stores the arc lengths.
    typedef typename TR::LengthMap LengthMap;
    ///\brief The type of the map that stores the predecessor arcs of the
    ///shortest paths.
    typedef typename TR::PredMap PredMap;
    ///The type of the map that stores the distances of the nodes.
    typedef typename TR::DistMap DistMap;
    ///The type of the map that indicates which nodes are processed.
    typedef typename TR::ProcessedMap ProcessedMap;
    ///The type of the paths.
    typedef PredMapPath<Digraph, PredMap> Path;
    ///The cross reference type used for the current heap.
    typedef typename TR::HeapCrossRef HeapCrossRef;
    ///The heap type used by the algorithm.
    typedef typename TR::Heap Heap;
    /// \brief The \ref lemon::DijkstraDefaultOperationTraits
    /// "operation traits class" of the algorithm.
    typedef typename TR::OperationTraits OperationTraits;

    ///The \ref lemon::DijkstraDefaultTraits "traits class" of the algorithm.
    typedef TR Traits;

  private:

    typedef typename Digraph::Node Node;
    typedef typename Digraph::NodeIt NodeIt;
    typedef typename Digraph::Arc Arc;
    typedef typename Digraph::OutArcIt OutArcIt;

    //Pointer to the underlying digraph.
    const Digraph *G;
    //Pointer to the length map.
    const LengthMap *_length;
    //Pointer to the map of predecessors arcs.
    PredMap *_pred;
    //Indicates if _pred is locally allocated (true) or not.
    bool local_pred;
    //Pointer to the map of distances.
    DistMap *_dist;
    //Indicates if _dist is locally allocated (true) or not.
    bool local_dist;
    //Pointer to the map of processed status of the nodes.
    ProcessedMap *_processed;
    //Indicates if _processed is locally allocated (true) or not.
    bool local_processed;
    //Pointer to the heap cross references.
    HeapCrossRef *_heap_cross_ref;
    //Indicates if _heap_cross_ref is locally allocated (true) or not.
    bool local_heap_cross_ref;
    //Pointer to the heap.
    Heap *_heap;
    //Indicates if _heap is locally allocated (true) or not.
    bool local_heap;

    //Creates the maps if necessary.
    void create_maps()
    {
      if(!_pred) {
        local_pred = true;
        _pred = Traits::createPredMap(*G);
      }
      if(!_dist) {
        local_dist = true;
        _dist = Traits::createDistMap(*G);
      }
      if(!_processed) {
        local_processed = true;
        _processed = Traits::createProcessedMap(*G);
      }
      if (!_heap_cross_ref) {
        local_heap_cross_ref = true;
        _heap_cross_ref = Traits::createHeapCrossRef(*G);
      }
      if (!_heap) {
        local_heap = true;
        _heap = Traits::createHeap(*_heap_cross_ref);
      }
    }

  public:

    typedef Dijkstra Create;

    ///\name Named Template Parameters

    ///@{

    template <class T>
    struct SetPredMapTraits : public Traits {
      typedef T PredMap;
      static PredMap *createPredMap(const Digraph &)
      {
        LEMON_ASSERT(false, "PredMap is not initialized");
        return 0; // ignore warnings
      }
    };
    ///\brief \ref named-templ-param "Named parameter" for setting
    ///\c PredMap type.
    ///
    ///\ref named-templ-param "Named parameter" for setting
    ///\c PredMap type.
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
    template <class T>
    struct SetPredMap
      : public Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > {
      typedef Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > Create;
    };

    template <class T>
    struct SetDistMapTraits : public Traits {
      typedef T DistMap;
      static DistMap *createDistMap(const Digraph &)
      {
        LEMON_ASSERT(false, "DistMap is not initialized");
        return 0; // ignore warnings
      }
    };
    ///\brief \ref named-templ-param "Named parameter" for setting
    ///\c DistMap type.
    ///
    ///\ref named-templ-param "Named parameter" for setting
    ///\c DistMap type.
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
    template <class T>
    struct SetDistMap
      : public Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > {
      typedef Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > Create;
    };

    template <class T>
    struct SetProcessedMapTraits : public Traits {
      typedef T ProcessedMap;
      static ProcessedMap *createProcessedMap(const Digraph &)
      {
        LEMON_ASSERT(false, "ProcessedMap is not initialized");
        return 0; // ignore warnings
      }
    };
    ///\brief \ref named-templ-param "Named parameter" for setting
    ///\c ProcessedMap type.
    ///
    ///\ref named-templ-param "Named parameter" for setting
    ///\c ProcessedMap type.
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
    template <class T>
    struct SetProcessedMap
      : public Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > {
      typedef Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > Create;
    };

    struct SetStandardProcessedMapTraits : public Traits {
      typedef typename Digraph::template NodeMap<bool> ProcessedMap;
      static ProcessedMap *createProcessedMap(const Digraph &g)
      {
        return new ProcessedMap(g);
      }
    };
    ///\brief \ref named-templ-param "Named parameter" for setting
    ///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
    ///
    ///\ref named-templ-param "Named parameter" for setting
    ///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
    ///If you don't set it explicitly, it will be automatically allocated.
    struct SetStandardProcessedMap
      : public Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits > {
      typedef Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits >
      Create;
    };

    template <class H, class CR>
    struct SetHeapTraits : public Traits {
      typedef CR HeapCrossRef;
      typedef H Heap;
      static HeapCrossRef *createHeapCrossRef(const Digraph &) {
        LEMON_ASSERT(false, "HeapCrossRef is not initialized");
        return 0; // ignore warnings
      }
      static Heap *createHeap(HeapCrossRef &)
      {
        LEMON_ASSERT(false, "Heap is not initialized");
        return 0; // ignore warnings
      }
    };
    ///\brief \ref named-templ-param "Named parameter" for setting
    ///heap and cross reference types
    ///
    ///\ref named-templ-param "Named parameter" for setting heap and cross
    ///reference types. If this named parameter is used, then external
    ///heap and cross reference objects must be passed to the algorithm
    ///using the \ref heap() function before calling \ref run(Node) "run()"
    ///or \ref init().
    ///\sa SetStandardHeap
    template <class H, class CR = typename Digraph::template NodeMap<int> >
    struct SetHeap
      : public Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > {
      typedef Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > Create;
    };

    template <class H, class CR>
    struct SetStandardHeapTraits : public Traits {
      typedef CR HeapCrossRef;
      typedef H Heap;
      static HeapCrossRef *createHeapCrossRef(const Digraph &G) {
        return new HeapCrossRef(G);
      }
      static Heap *createHeap(HeapCrossRef &R)
      {
        return new Heap(R);
      }
    };
    ///\brief \ref named-templ-param "Named parameter" for setting
    ///heap and cross reference types with automatic allocation
    ///
    ///\ref named-templ-param "Named parameter" for setting heap and cross
    ///reference types with automatic allocation.
    ///They should have standard constructor interfaces to be able to
    ///automatically created by the algorithm (i.e. the digraph should be
    ///passed to the constructor of the cross reference and the cross
    ///reference should be passed to the constructor of the heap).
    ///However, external heap and cross reference objects could also be
    ///passed to the algorithm using the \ref heap() function before
    ///calling \ref run(Node) "run()" or \ref init().
    ///\sa SetHeap
    template <class H, class CR = typename Digraph::template NodeMap<int> >
    struct SetStandardHeap
      : public Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> > {
      typedef Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> >
      Create;
    };

    template <class T>
    struct SetOperationTraitsTraits : public Traits {
      typedef T OperationTraits;
    };

    /// \brief \ref named-templ-param "Named parameter" for setting
    ///\c OperationTraits type
    ///
    ///\ref named-templ-param "Named parameter" for setting
    ///\c OperationTraits type.
    /// For more information, see \ref DijkstraDefaultOperationTraits.
    template <class T>
    struct SetOperationTraits
      : public Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > {
      typedef Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> >
      Create;
    };

    ///@}

  protected:

    Dijkstra() {}

  public:

    ///Constructor.

    ///Constructor.
    ///\param g The digraph the algorithm runs on.
    ///\param length The length map used by the algorithm.
    Dijkstra(const Digraph& g, const LengthMap& length) :
      G(&g), _length(&length),
      _pred(NULL), local_pred(false),
      _dist(NULL), local_dist(false),
      _processed(NULL), local_processed(false),
      _heap_cross_ref(NULL), local_heap_cross_ref(false),
      _heap(NULL), local_heap(false)
    { }

    ///Destructor.
    ~Dijkstra()
    {
      if(local_pred) delete _pred;
      if(local_dist) delete _dist;
      if(local_processed) delete _processed;
      if(local_heap_cross_ref) delete _heap_cross_ref;
      if(local_heap) delete _heap;
    }

    ///Sets the length map.

    ///Sets the length map.
    ///\return <tt> (*this) </tt>
    Dijkstra &lengthMap(const LengthMap &m)
    {
      _length = &m;
      return *this;
    }

    ///Sets the map that stores the predecessor arcs.

    ///Sets the map that stores the predecessor arcs.
    ///If you don't use this function before calling \ref run(Node) "run()"
    ///or \ref init(), an instance will be allocated automatically.
    ///The destructor deallocates this automatically allocated map,
    ///of course.
    ///\return <tt> (*this) </tt>
    Dijkstra &predMap(PredMap &m)
    {
      if(local_pred) {
        delete _pred;
        local_pred=false;
      }
      _pred = &m;
      return *this;
    }

    ///Sets the map that indicates which nodes are processed.

    ///Sets the map that indicates which nodes are processed.
    ///If you don't use this function before calling \ref run(Node) "run()"
    ///or \ref init(), an instance will be allocated automatically.
    ///The destructor deallocates this automatically allocated map,
    ///of course.
    ///\return <tt> (*this) </tt>
    Dijkstra &processedMap(ProcessedMap &m)
    {
      if(local_processed) {
        delete _processed;
        local_processed=false;
      }
      _processed = &m;
      return *this;
    }

    ///Sets the map that stores the distances of the nodes.

    ///Sets the map that stores the distances of the nodes calculated by the
    ///algorithm.
    ///If you don't use this function before calling \ref run(Node) "run()"
    ///or \ref init(), an instance will be allocated automatically.
    ///The destructor deallocates this automatically allocated map,
    ///of course.
    ///\return <tt> (*this) </tt>
    Dijkstra &distMap(DistMap &m)
    {
      if(local_dist) {
        delete _dist;
        local_dist=false;
      }
      _dist = &m;
      return *this;
    }

    ///Sets the heap and the cross reference used by algorithm.

    ///Sets the heap and the cross reference used by algorithm.
    ///If you don't use this function before calling \ref run(Node) "run()"
    ///or \ref init(), heap and cross reference instances will be
    ///allocated automatically.
    ///The destructor deallocates these automatically allocated objects,
    ///of course.
    ///\return <tt> (*this) </tt>
    Dijkstra &heap(Heap& hp, HeapCrossRef &cr)
    {
      if(local_heap_cross_ref) {
        delete _heap_cross_ref;
        local_heap_cross_ref=false;
      }
      _heap_cross_ref = &cr;
      if(local_heap) {
        delete _heap;
        local_heap=false;
      }
      _heap = &hp;
      return *this;
    }

  private:

    void finalizeNodeData(Node v,Value dst)
    {
      _processed->set(v,true);
      _dist->set(v, dst);
    }

  public:

    ///\name Execution Control
    ///The simplest way to execute the %Dijkstra algorithm is to use
    ///one of the member functions called \ref run(Node) "run()".\n
    ///If you need better control on the execution, you have to call
    ///\ref init() first, then you can add several source nodes with
    ///\ref addSource(). Finally the actual path computation can be
    ///performed with one of the \ref start() functions.

    ///@{

    ///\brief Initializes the internal data structures.
    ///
    ///Initializes the internal data structures.
    void init()
    {
      create_maps();
      _heap->clear();
      for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
        _pred->set(u,INVALID);
        _processed->set(u,false);
        _heap_cross_ref->set(u,Heap::PRE_HEAP);
      }
    }

    ///Adds a new source node.

    ///Adds a new source node to the priority heap.
    ///The optional second parameter is the initial distance of the node.
    ///
    ///The function checks if the node has already been added to the heap and
    ///it is pushed to the heap only if either it was not in the heap
    ///or the shortest path found till then is shorter than \c dst.
    void addSource(Node s,Value dst=OperationTraits::zero())
    {
      if(_heap->state(s) != Heap::IN_HEAP) {
        _heap->push(s,dst);
      } else if(OperationTraits::less((*_heap)[s], dst)) {
        _heap->set(s,dst);
        _pred->set(s,INVALID);
      }
    }

    ///Processes the next node in the priority heap

    ///Processes the next node in the priority heap.
    ///
    ///\return The processed node.
    ///
    ///\warning The priority heap must not be empty.
    Node processNextNode()
    {
      Node v=_heap->top();
      Value oldvalue=_heap->prio();
      _heap->pop();
      finalizeNodeData(v,oldvalue);

      for(OutArcIt e(*G,v); e!=INVALID; ++e) {
        Node w=G->target(e);
        switch(_heap->state(w)) {
        case Heap::PRE_HEAP:
          _heap->push(w,OperationTraits::plus(oldvalue, (*_length)[e]));
          _pred->set(w,e);
          break;
        case Heap::IN_HEAP:
          {
            Value newvalue = OperationTraits::plus(oldvalue, (*_length)[e]);
            if ( OperationTraits::less(newvalue, (*_heap)[w]) ) {
              _heap->decrease(w, newvalue);
              _pred->set(w,e);
            }
          }
          break;
        case Heap::POST_HEAP:
          break;
        }
      }
      return v;
    }

    ///The next node to be processed.

    ///Returns the next node to be processed or \c INVALID if the
    ///priority heap is empty.
    Node nextNode() const
    {
      return !_heap->empty()?_heap->top():INVALID;
    }

    ///Returns \c false if there are nodes to be processed.

    ///Returns \c false if there are nodes to be processed
    ///in the priority heap.
    bool emptyQueue() const { return _heap->empty(); }

    ///Returns the number of the nodes to be processed.

    ///Returns the number of the nodes to be processed
    ///in the priority heap.
    int queueSize() const { return _heap->size(); }

    ///Executes the algorithm.

    ///Executes the algorithm.
    ///
    ///This method runs the %Dijkstra algorithm from the root node(s)
    ///in order to compute the shortest path to each node.
    ///
    ///The algorithm computes
    ///- the shortest path tree (forest),
    ///- the distance of each node from the root(s).
    ///
    ///\pre init() must be called and at least one root node should be
    ///added with addSource() before using this function.
    ///
    ///\note <tt>d.start()</tt> is just a shortcut of the following code.
    ///\code
    ///  while ( !d.emptyQueue() ) {
    ///    d.processNextNode();
    ///  }
    ///\endcode
    void start()
    {
      while ( !emptyQueue() ) processNextNode();
    }

    ///Executes the algorithm until the given target node is processed.

    ///Executes the algorithm until the given target node is processed.
    ///
    ///This method runs the %Dijkstra algorithm from the root node(s)
    ///in order to compute the shortest path to \c t.
    ///
    ///The algorithm computes
    ///- the shortest path to \c t,
    ///- the distance of \c t from the root(s).
    ///
    ///\pre init() must be called and at least one root node should be
    ///added with addSource() before using this function.
    void start(Node t)
    {
      while ( !_heap->empty() && _heap->top()!=t ) processNextNode();
      if ( !_heap->empty() ) {
        finalizeNodeData(_heap->top(),_heap->prio());
        _heap->pop();
      }
    }

    ///Executes the algorithm until a condition is met.

    ///Executes the algorithm until a condition is met.
    ///
    ///This method runs the %Dijkstra algorithm from the root node(s) in
    ///order to compute the shortest path to a node \c v with
    /// <tt>nm[v]</tt> true, if such a node can be found.
    ///
    ///\param nm A \c bool (or convertible) node map. The algorithm
    ///will stop when it reaches a node \c v with <tt>nm[v]</tt> true.
    ///
    ///\return The reached node \c v with <tt>nm[v]</tt> true or
    ///\c INVALID if no such node was found.
    ///
    ///\pre init() must be called and at least one root node should be
    ///added with addSource() before using this function.
    template<class NodeBoolMap>
    Node start(const NodeBoolMap &nm)
    {
      while ( !_heap->empty() && !nm[_heap->top()] ) processNextNode();
      if ( _heap->empty() ) return INVALID;
      finalizeNodeData(_heap->top(),_heap->prio());
      return _heap->top();
    }

    ///Runs the algorithm from the given source node.

    ///This method runs the %Dijkstra algorithm from node \c s
    ///in order to compute the shortest path to each node.
    ///
    ///The algorithm computes
    ///- the shortest path tree,
    ///- the distance of each node from the root.
    ///
    ///\note <tt>d.run(s)</tt> is just a shortcut of the following code.
    ///\code
    ///  d.init();
    ///  d.addSource(s);
    ///  d.start();
    ///\endcode
    void run(Node s) {
      init();
      addSource(s);
      start();
    }

    ///Finds the shortest path between \c s and \c t.

    ///This method runs the %Dijkstra algorithm from node \c s
    ///in order to compute the shortest path to node \c t
    ///(it stops searching when \c t is processed).
    ///
    ///\return \c true if \c t is reachable form \c s.
    ///
    ///\note Apart from the return value, <tt>d.run(s,t)</tt> is just a
    ///shortcut of the following code.
    ///\code
    ///  d.init();
    ///  d.addSource(s);
    ///  d.start(t);
    ///\endcode
    bool run(Node s,Node t) {
      init();
      addSource(s);
      start(t);
      return (*_heap_cross_ref)[t] == Heap::POST_HEAP;
    }

    ///@}

    ///\name Query Functions
    ///The results of the %Dijkstra algorithm can be obtained using these
    ///functions.\n
    ///Either \ref run(Node) "run()" or \ref init() should be called
    ///before using them.

    ///@{

    ///The shortest path to the given node.

    ///Returns the shortest path to the given node from the root(s).
    ///
    ///\warning \c t should be reached from the root(s).
    ///
    ///\pre Either \ref run(Node) "run()" or \ref init()
    ///must be called before using this function.
    Path path(Node t) const { return Path(*G, *_pred, t); }

    ///The distance of the given node from the root(s).

    ///Returns the distance of the given node from the root(s).
    ///
    ///\warning If node \c v is not reached from the root(s), then
    ///the return value of this function is undefined.
    ///
    ///\pre Either \ref run(Node) "run()" or \ref init()
    ///must be called before using this function.
    Value dist(Node v) const { return (*_dist)[v]; }

    ///\brief Returns the 'previous arc' of the shortest path tree for
    ///the given node.
    ///
    ///This function returns the 'previous arc' of the shortest path
    ///tree for the node \c v, i.e. it returns the last arc of a
    ///shortest path from a root to \c v. It is \c INVALID if \c v
    ///is not reached from the root(s) or if \c v is a root.
    ///
    ///The shortest path tree used here is equal to the shortest path
    ///tree used in \ref predNode() and \ref predMap().
    ///
    ///\pre Either \ref run(Node) "run()" or \ref init()
    ///must be called before using this function.
    Arc predArc(Node v) const { return (*_pred)[v]; }

    ///\brief Returns the 'previous node' of the shortest path tree for
    ///the given node.
    ///
    ///This function returns the 'previous node' of the shortest path
    ///tree for the node \c v, i.e. it returns the last but one node
    ///of a shortest path from a root to \c v. It is \c INVALID
    ///if \c v is not reached from the root(s) or if \c v is a root.
    ///
    ///The shortest path tree used here is equal to the shortest path
    ///tree used in \ref predArc() and \ref predMap().
    ///
    ///\pre Either \ref run(Node) "run()" or \ref init()
    ///must be called before using this function.
    Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
                                  G->source((*_pred)[v]); }

    ///\brief Returns a const reference to the node map that stores the
    ///distances of the nodes.
    ///
    ///Returns a const reference to the node map that stores the distances
    ///of the nodes calculated by the algorithm.
    ///
    ///\pre Either \ref run(Node) "run()" or \ref init()
    ///must be called before using this function.
    const DistMap &distMap() const { return *_dist;}

    ///\brief Returns a const reference to the node map that stores the
    ///predecessor arcs.
    ///
    ///Returns a const reference to the node map that stores the predecessor
    ///arcs, which form the shortest path tree (forest).
    ///
    ///\pre Either \ref run(Node) "run()" or \ref init()
    ///must be called before using this function.
    const PredMap &predMap() const { return *_pred;}

    ///Checks if the given node is reached from the root(s).

    ///Returns \c true if \c v is reached from the root(s).
    ///
    ///\pre Either \ref run(Node) "run()" or \ref init()
    ///must be called before using this function.
    bool reached(Node v) const { return (*_heap_cross_ref)[v] !=
                                        Heap::PRE_HEAP; }

    ///Checks if a node is processed.

    ///Returns \c true if \c v is processed, i.e. the shortest
    ///path to \c v has already found.
    ///
    ///\pre Either \ref run(Node) "run()" or \ref init()
    ///must be called before using this function.
    bool processed(Node v) const { return (*_heap_cross_ref)[v] ==
                                          Heap::POST_HEAP; }

    ///The current distance of the given node from the root(s).

    ///Returns the current distance of the given node from the root(s).
    ///It may be decreased in the following processes.
    ///
    ///\pre Either \ref run(Node) "run()" or \ref init()
    ///must be called before using this function and
    ///node \c v must be reached but not necessarily processed.
    Value currentDist(Node v) const {
      return processed(v) ? (*_dist)[v] : (*_heap)[v];
    }

    ///@}
  };


  ///Default traits class of dijkstra() function.

  ///Default traits class of dijkstra() function.
  ///\tparam GR The type of the digraph.
  ///\tparam LEN The type of the length map.
  template<class GR, class LEN>
  struct DijkstraWizardDefaultTraits
  {
    ///The type of the digraph the algorithm runs on.
    typedef GR Digraph;
    ///The type of the map that stores the arc lengths.

    ///The type of the map that stores the arc lengths.
    ///It must conform to the \ref concepts::ReadMap "ReadMap" concept.
    typedef LEN LengthMap;
    ///The type of the arc lengths.
    typedef typename LEN::Value Value;

    /// Operation traits for Dijkstra algorithm.

    /// This class defines the operations that are used in the algorithm.
    /// \see DijkstraDefaultOperationTraits
    typedef DijkstraDefaultOperationTraits<Value> OperationTraits;

    /// The cross reference type used by the heap.

    /// The cross reference type used by the heap.
    /// Usually it is \c Digraph::NodeMap<int>.
    typedef typename Digraph::template NodeMap<int> HeapCrossRef;
    ///Instantiates a \ref HeapCrossRef.

    ///This function instantiates a \ref HeapCrossRef.
    /// \param g is the digraph, to which we would like to define the
    /// HeapCrossRef.
    static HeapCrossRef *createHeapCrossRef(const Digraph &g)
    {
      return new HeapCrossRef(g);
    }

    ///The heap type used by the Dijkstra algorithm.

    ///The heap type used by the Dijkstra algorithm.
    ///
    ///\sa BinHeap
    ///\sa Dijkstra
    typedef BinHeap<Value, typename Digraph::template NodeMap<int>,
                    std::less<Value> > Heap;

    ///Instantiates a \ref Heap.

    ///This function instantiates a \ref Heap.
    /// \param r is the HeapCrossRef which is used.
    static Heap *createHeap(HeapCrossRef& r)
    {
      return new Heap(r);
    }

    ///\brief The type of the map that stores the predecessor
    ///arcs of the shortest paths.
    ///
    ///The type of the map that stores the predecessor
    ///arcs of the shortest paths.
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
    typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
    ///Instantiates a PredMap.

    ///This function instantiates a PredMap.
    ///\param g is the digraph, to which we would like to define the
    ///PredMap.
    static PredMap *createPredMap(const Digraph &g)
    {
      return new PredMap(g);
    }

    ///The type of the map that indicates which nodes are processed.

    ///The type of the map that indicates which nodes are processed.
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
    ///By default, it is a NullMap.
    typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
    ///Instantiates a ProcessedMap.

    ///This function instantiates a ProcessedMap.
    ///\param g is the digraph, to which
    ///we would like to define the ProcessedMap.
#ifdef DOXYGEN
    static ProcessedMap *createProcessedMap(const Digraph &g)
#else
    static ProcessedMap *createProcessedMap(const Digraph &)
#endif
    {
      return new ProcessedMap();
    }

    ///The type of the map that stores the distances of the nodes.

    ///The type of the map that stores the distances of the nodes.
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
    typedef typename Digraph::template NodeMap<typename LEN::Value> DistMap;
    ///Instantiates a DistMap.

    ///This function instantiates a DistMap.
    ///\param g is the digraph, to which we would like to define
    ///the DistMap
    static DistMap *createDistMap(const Digraph &g)
    {
      return new DistMap(g);
    }

    ///The type of the shortest paths.

    ///The type of the shortest paths.
    ///It must conform to the \ref concepts::Path "Path" concept.
    typedef lemon::Path<Digraph> Path;
  };

  /// Default traits class used by DijkstraWizard

  /// Default traits class used by DijkstraWizard.
  /// \tparam GR The type of the digraph.
  /// \tparam LEN The type of the length map.
  template<typename GR, typename LEN>
  class DijkstraWizardBase : public DijkstraWizardDefaultTraits<GR,LEN>
  {
    typedef DijkstraWizardDefaultTraits<GR,LEN> Base;
  protected:
    //The type of the nodes in the digraph.
    typedef typename Base::Digraph::Node Node;

    //Pointer to the digraph the algorithm runs on.
    void *_g;
    //Pointer to the length map.
    void *_length;
    //Pointer to the map of processed nodes.
    void *_processed;
    //Pointer to the map of predecessors arcs.
    void *_pred;
    //Pointer to the map of distances.
    void *_dist;
    //Pointer to the shortest path to the target node.
    void *_path;
    //Pointer to the distance of the target node.
    void *_di;

  public:
    /// Constructor.

    /// This constructor does not require parameters, therefore it initiates
    /// all of the attributes to \c 0.
    DijkstraWizardBase() : _g(0), _length(0), _processed(0), _pred(0),
                           _dist(0), _path(0), _di(0) {}

    /// Constructor.

    /// This constructor requires two parameters,
    /// others are initiated to \c 0.
    /// \param g The digraph the algorithm runs on.
    /// \param l The length map.
    DijkstraWizardBase(const GR &g,const LEN &l) :
      _g(reinterpret_cast<void*>(const_cast<GR*>(&g))),
      _length(reinterpret_cast<void*>(const_cast<LEN*>(&l))),
      _processed(0), _pred(0), _dist(0), _path(0), _di(0) {}

  };

  /// Auxiliary class for the function-type interface of Dijkstra algorithm.

  /// This auxiliary class is created to implement the
  /// \ref dijkstra() "function-type interface" of \ref Dijkstra algorithm.
  /// It does not have own \ref run(Node) "run()" method, it uses the
  /// functions and features of the plain \ref Dijkstra.
  ///
  /// This class should only be used through the \ref dijkstra() function,
  /// which makes it easier to use the algorithm.
  ///
  /// \tparam TR The traits class that defines various types used by the
  /// algorithm.
  template<class TR>
  class DijkstraWizard : public TR
  {
    typedef TR Base;

    typedef typename TR::Digraph Digraph;

    typedef typename Digraph::Node Node;
    typedef typename Digraph::NodeIt NodeIt;
    typedef typename Digraph::Arc Arc;
    typedef typename Digraph::OutArcIt OutArcIt;

    typedef typename TR::LengthMap LengthMap;
    typedef typename LengthMap::Value Value;
    typedef typename TR::PredMap PredMap;
    typedef typename TR::DistMap DistMap;
    typedef typename TR::ProcessedMap ProcessedMap;
    typedef typename TR::Path Path;
    typedef typename TR::Heap Heap;

  public:

    /// Constructor.
    DijkstraWizard() : TR() {}

    /// Constructor that requires parameters.

    /// Constructor that requires parameters.
    /// These parameters will be the default values for the traits class.
    /// \param g The digraph the algorithm runs on.
    /// \param l The length map.
    DijkstraWizard(const Digraph &g, const LengthMap &l) :
      TR(g,l) {}

    ///Copy constructor
    DijkstraWizard(const TR &b) : TR(b) {}

    ~DijkstraWizard() {}

    ///Runs Dijkstra algorithm from the given source node.

    ///This method runs %Dijkstra algorithm from the given source node
    ///in order to compute the shortest path to each node.
    void run(Node s)
    {
      Dijkstra<Digraph,LengthMap,TR>
        dijk(*reinterpret_cast<const Digraph*>(Base::_g),
             *reinterpret_cast<const LengthMap*>(Base::_length));
      if (Base::_pred)
        dijk.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
      if (Base::_dist)
        dijk.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
      if (Base::_processed)
        dijk.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
      dijk.run(s);
    }

    ///Finds the shortest path between \c s and \c t.

    ///This method runs the %Dijkstra algorithm from node \c s
    ///in order to compute the shortest path to node \c t
    ///(it stops searching when \c t is processed).
    ///
    ///\return \c true if \c t is reachable form \c s.
    bool run(Node s, Node t)
    {
      Dijkstra<Digraph,LengthMap,TR>
        dijk(*reinterpret_cast<const Digraph*>(Base::_g),
             *reinterpret_cast<const LengthMap*>(Base::_length));
      if (Base::_pred)
        dijk.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
      if (Base::_dist)
        dijk.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
      if (Base::_processed)
        dijk.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
      dijk.run(s,t);
      if (Base::_path)
        *reinterpret_cast<Path*>(Base::_path) = dijk.path(t);
      if (Base::_di)
        *reinterpret_cast<Value*>(Base::_di) = dijk.dist(t);
      return dijk.reached(t);
    }

    template<class T>
    struct SetPredMapBase : public Base {
      typedef T PredMap;
      static PredMap *createPredMap(const Digraph &) { return 0; };
      SetPredMapBase(const TR &b) : TR(b) {}
    };

    ///\brief \ref named-templ-param "Named parameter" for setting
    ///the predecessor map.
    ///
    ///\ref named-templ-param "Named parameter" function for setting
    ///the map that stores the predecessor arcs of the nodes.
    template<class T>
    DijkstraWizard<SetPredMapBase<T> > predMap(const T &t)
    {
      Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
      return DijkstraWizard<SetPredMapBase<T> >(*this);
    }

    template<class T>
    struct SetDistMapBase : public Base {
      typedef T DistMap;
      static DistMap *createDistMap(const Digraph &) { return 0; };
      SetDistMapBase(const TR &b) : TR(b) {}
    };

    ///\brief \ref named-templ-param "Named parameter" for setting
    ///the distance map.
    ///
    ///\ref named-templ-param "Named parameter" function for setting
    ///the map that stores the distances of the nodes calculated
    ///by the algorithm.
    template<class T>
    DijkstraWizard<SetDistMapBase<T> > distMap(const T &t)
    {
      Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));
      return DijkstraWizard<SetDistMapBase<T> >(*this);
    }

    template<class T>
    struct SetProcessedMapBase : public Base {
      typedef T ProcessedMap;
      static ProcessedMap *createProcessedMap(const Digraph &) { return 0; };
      SetProcessedMapBase(const TR &b) : TR(b) {}
    };

    ///\brief \ref named-func-param "Named parameter" for setting
    ///the processed map.
    ///
    ///\ref named-templ-param "Named parameter" function for setting
    ///the map that indicates which nodes are processed.
    template<class T>
    DijkstraWizard<SetProcessedMapBase<T> > processedMap(const T &t)
    {
      Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t));
      return DijkstraWizard<SetProcessedMapBase<T> >(*this);
    }

    template<class T>
    struct SetPathBase : public Base {
      typedef T Path;
      SetPathBase(const TR &b) : TR(b) {}
    };

    ///\brief \ref named-func-param "Named parameter"
    ///for getting the shortest path to the target node.
    ///
    ///\ref named-func-param "Named parameter"
    ///for getting the shortest path to the target node.
    template<class T>
    DijkstraWizard<SetPathBase<T> > path(const T &t)
    {
      Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t));
      return DijkstraWizard<SetPathBase<T> >(*this);
    }

    ///\brief \ref named-func-param "Named parameter"
    ///for getting the distance of the target node.
    ///
    ///\ref named-func-param "Named parameter"
    ///for getting the distance of the target node.
    DijkstraWizard dist(const Value &d)
    {
      Base::_di=reinterpret_cast<void*>(const_cast<Value*>(&d));
      return *this;
    }

  };

  ///Function-type interface for Dijkstra algorithm.

  /// \ingroup shortest_path
  ///Function-type interface for Dijkstra algorithm.
  ///
  ///This function also has several \ref named-func-param "named parameters",
  ///they are declared as the members of class \ref DijkstraWizard.
  ///The following examples show how to use these parameters.
  ///\code
  ///  // Compute shortest path from node s to each node
  ///  dijkstra(g,length).predMap(preds).distMap(dists).run(s);
  ///
  ///  // Compute shortest path from s to t
  ///  bool reached = dijkstra(g,length).path(p).dist(d).run(s,t);
  ///\endcode
  ///\warning Don't forget to put the \ref DijkstraWizard::run(Node) "run()"
  ///to the end of the parameter list.
  ///\sa DijkstraWizard
  ///\sa Dijkstra
  template<typename GR, typename LEN>
  DijkstraWizard<DijkstraWizardBase<GR,LEN> >
  dijkstra(const GR &digraph, const LEN &length)
  {
    return DijkstraWizard<DijkstraWizardBase<GR,LEN> >(digraph,length);
  }

} //END OF NAMESPACE LEMON

#endif