Welcome to mirror list, hosted at ThFree Co, Russian Federation.

euler.h « lemon « lemon-1.3.1 « 3rd « quadriflow « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 3a3cbd0653d70d1456bc640d3d747edf3456ac46 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
/* -*- mode: C++; indent-tabs-mode: nil; -*-
 *
 * This file is a part of LEMON, a generic C++ optimization library.
 *
 * Copyright (C) 2003-2013
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
 *
 * Permission to use, modify and distribute this software is granted
 * provided that this copyright notice appears in all copies. For
 * precise terms see the accompanying LICENSE file.
 *
 * This software is provided "AS IS" with no warranty of any kind,
 * express or implied, and with no claim as to its suitability for any
 * purpose.
 *
 */

#ifndef LEMON_EULER_H
#define LEMON_EULER_H

#include<lemon/core.h>
#include<lemon/adaptors.h>
#include<lemon/connectivity.h>
#include <list>

/// \ingroup graph_properties
/// \file
/// \brief Euler tour iterators and a function for checking the \e Eulerian
/// property.
///
///This file provides Euler tour iterators and a function to check
///if a (di)graph is \e Eulerian.

namespace lemon {

  ///Euler tour iterator for digraphs.

  /// \ingroup graph_properties
  ///This iterator provides an Euler tour (Eulerian circuit) of a \e directed
  ///graph (if there exists) and it converts to the \c Arc type of the digraph.
  ///
  ///For example, if the given digraph has an Euler tour (i.e it has only one
  ///non-trivial component and the in-degree is equal to the out-degree
  ///for all nodes), then the following code will put the arcs of \c g
  ///to the vector \c et according to an Euler tour of \c g.
  ///\code
  ///  std::vector<ListDigraph::Arc> et;
  ///  for(DiEulerIt<ListDigraph> e(g); e!=INVALID; ++e)
  ///    et.push_back(e);
  ///\endcode
  ///If \c g has no Euler tour, then the resulted walk will not be closed
  ///or not contain all arcs.
  ///\sa EulerIt
  template<typename GR>
  class DiEulerIt
  {
    typedef typename GR::Node Node;
    typedef typename GR::NodeIt NodeIt;
    typedef typename GR::Arc Arc;
    typedef typename GR::ArcIt ArcIt;
    typedef typename GR::OutArcIt OutArcIt;
    typedef typename GR::InArcIt InArcIt;

    const GR &g;
    typename GR::template NodeMap<OutArcIt> narc;
    std::list<Arc> euler;

  public:

    ///Constructor

    ///Constructor.
    ///\param gr A digraph.
    ///\param start The starting point of the tour. If it is not given,
    ///the tour will start from the first node that has an outgoing arc.
    DiEulerIt(const GR &gr, typename GR::Node start = INVALID)
      : g(gr), narc(g)
    {
      if (start==INVALID) {
        NodeIt n(g);
        while (n!=INVALID && OutArcIt(g,n)==INVALID) ++n;
        start=n;
      }
      if (start!=INVALID) {
        for (NodeIt n(g); n!=INVALID; ++n) narc[n]=OutArcIt(g,n);
        while (narc[start]!=INVALID) {
          euler.push_back(narc[start]);
          Node next=g.target(narc[start]);
          ++narc[start];
          start=next;
        }
      }
    }

    ///Arc conversion
    operator Arc() { return euler.empty()?INVALID:euler.front(); }
    ///Compare with \c INVALID
    bool operator==(Invalid) { return euler.empty(); }
    ///Compare with \c INVALID
    bool operator!=(Invalid) { return !euler.empty(); }

    ///Next arc of the tour

    ///Next arc of the tour
    ///
    DiEulerIt &operator++() {
      Node s=g.target(euler.front());
      euler.pop_front();
      typename std::list<Arc>::iterator next=euler.begin();
      while(narc[s]!=INVALID) {
        euler.insert(next,narc[s]);
        Node n=g.target(narc[s]);
        ++narc[s];
        s=n;
      }
      return *this;
    }
    ///Postfix incrementation

    /// Postfix incrementation.
    ///
    ///\warning This incrementation
    ///returns an \c Arc, not a \ref DiEulerIt, as one may
    ///expect.
    Arc operator++(int)
    {
      Arc e=*this;
      ++(*this);
      return e;
    }
  };

  ///Euler tour iterator for graphs.

  /// \ingroup graph_properties
  ///This iterator provides an Euler tour (Eulerian circuit) of an
  ///\e undirected graph (if there exists) and it converts to the \c Arc
  ///and \c Edge types of the graph.
  ///
  ///For example, if the given graph has an Euler tour (i.e it has only one
  ///non-trivial component and the degree of each node is even),
  ///the following code will print the arc IDs according to an
  ///Euler tour of \c g.
  ///\code
  ///  for(EulerIt<ListGraph> e(g); e!=INVALID; ++e) {
  ///    std::cout << g.id(Edge(e)) << std::eol;
  ///  }
  ///\endcode
  ///Although this iterator is for undirected graphs, it still returns
  ///arcs in order to indicate the direction of the tour.
  ///(But arcs convert to edges, of course.)
  ///
  ///If \c g has no Euler tour, then the resulted walk will not be closed
  ///or not contain all edges.
  template<typename GR>
  class EulerIt
  {
    typedef typename GR::Node Node;
    typedef typename GR::NodeIt NodeIt;
    typedef typename GR::Arc Arc;
    typedef typename GR::Edge Edge;
    typedef typename GR::ArcIt ArcIt;
    typedef typename GR::OutArcIt OutArcIt;
    typedef typename GR::InArcIt InArcIt;

    const GR &g;
    typename GR::template NodeMap<OutArcIt> narc;
    typename GR::template EdgeMap<bool> visited;
    std::list<Arc> euler;

  public:

    ///Constructor

    ///Constructor.
    ///\param gr A graph.
    ///\param start The starting point of the tour. If it is not given,
    ///the tour will start from the first node that has an incident edge.
    EulerIt(const GR &gr, typename GR::Node start = INVALID)
      : g(gr), narc(g), visited(g, false)
    {
      if (start==INVALID) {
        NodeIt n(g);
        while (n!=INVALID && OutArcIt(g,n)==INVALID) ++n;
        start=n;
      }
      if (start!=INVALID) {
        for (NodeIt n(g); n!=INVALID; ++n) narc[n]=OutArcIt(g,n);
        while(narc[start]!=INVALID) {
          euler.push_back(narc[start]);
          visited[narc[start]]=true;
          Node next=g.target(narc[start]);
          ++narc[start];
          start=next;
          while(narc[start]!=INVALID && visited[narc[start]]) ++narc[start];
        }
      }
    }

    ///Arc conversion
    operator Arc() const { return euler.empty()?INVALID:euler.front(); }
    ///Edge conversion
    operator Edge() const { return euler.empty()?INVALID:euler.front(); }
    ///Compare with \c INVALID
    bool operator==(Invalid) const { return euler.empty(); }
    ///Compare with \c INVALID
    bool operator!=(Invalid) const { return !euler.empty(); }

    ///Next arc of the tour

    ///Next arc of the tour
    ///
    EulerIt &operator++() {
      Node s=g.target(euler.front());
      euler.pop_front();
      typename std::list<Arc>::iterator next=euler.begin();
      while(narc[s]!=INVALID) {
        while(narc[s]!=INVALID && visited[narc[s]]) ++narc[s];
        if(narc[s]==INVALID) break;
        else {
          euler.insert(next,narc[s]);
          visited[narc[s]]=true;
          Node n=g.target(narc[s]);
          ++narc[s];
          s=n;
        }
      }
      return *this;
    }

    ///Postfix incrementation

    /// Postfix incrementation.
    ///
    ///\warning This incrementation returns an \c Arc (which converts to
    ///an \c Edge), not an \ref EulerIt, as one may expect.
    Arc operator++(int)
    {
      Arc e=*this;
      ++(*this);
      return e;
    }
  };


  ///Check if the given graph is Eulerian

  /// \ingroup graph_properties
  ///This function checks if the given graph is Eulerian.
  ///It works for both directed and undirected graphs.
  ///
  ///By definition, a digraph is called \e Eulerian if
  ///and only if it is connected and the number of incoming and outgoing
  ///arcs are the same for each node.
  ///Similarly, an undirected graph is called \e Eulerian if
  ///and only if it is connected and the number of incident edges is even
  ///for each node.
  ///
  ///\note There are (di)graphs that are not Eulerian, but still have an
  /// Euler tour, since they may contain isolated nodes.
  ///
  ///\sa DiEulerIt, EulerIt
  template<typename GR>
#ifdef DOXYGEN
  bool
#else
  typename enable_if<UndirectedTagIndicator<GR>,bool>::type
  eulerian(const GR &g)
  {
    for(typename GR::NodeIt n(g);n!=INVALID;++n)
      if(countIncEdges(g,n)%2) return false;
    return connected(g);
  }
  template<class GR>
  typename disable_if<UndirectedTagIndicator<GR>,bool>::type
#endif
  eulerian(const GR &g)
  {
    for(typename GR::NodeIt n(g);n!=INVALID;++n)
      if(countInArcs(g,n)!=countOutArcs(g,n)) return false;
    return connected(undirector(g));
  }

}

#endif