Welcome to mirror list, hosted at ThFree Co, Russian Federation.

unionfind.h « lemon « lemon-1.3.1 « 3rd « quadriflow « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 3d96b372b2d298223f8f6bc8144f828194d46dd9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
/* -*- mode: C++; indent-tabs-mode: nil; -*-
 *
 * This file is a part of LEMON, a generic C++ optimization library.
 *
 * Copyright (C) 2003-2013
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
 *
 * Permission to use, modify and distribute this software is granted
 * provided that this copyright notice appears in all copies. For
 * precise terms see the accompanying LICENSE file.
 *
 * This software is provided "AS IS" with no warranty of any kind,
 * express or implied, and with no claim as to its suitability for any
 * purpose.
 *
 */

#ifndef LEMON_UNION_FIND_H
#define LEMON_UNION_FIND_H

//!\ingroup auxdat
//!\file
//!\brief Union-Find data structures.
//!

#include <vector>
#include <list>
#include <utility>
#include <algorithm>
#include <functional>

#include <lemon/core.h>

namespace lemon {

  /// \ingroup auxdat
  ///
  /// \brief A \e Union-Find data structure implementation
  ///
  /// The class implements the \e Union-Find data structure.
  /// The union operation uses rank heuristic, while
  /// the find operation uses path compression.
  /// This is a very simple but efficient implementation, providing
  /// only four methods: join (union), find, insert and size.
  /// For more features, see the \ref UnionFindEnum class.
  ///
  /// It is primarily used in Kruskal algorithm for finding minimal
  /// cost spanning tree in a graph.
  /// \sa kruskal()
  ///
  /// \pre You need to add all the elements by the \ref insert()
  /// method.
  template <typename IM>
  class UnionFind {
  public:

    ///\e
    typedef IM ItemIntMap;
    ///\e
    typedef typename ItemIntMap::Key Item;

  private:
    // If the items vector stores negative value for an item then
    // that item is root item and it has -items[it] component size.
    // Else the items[it] contains the index of the parent.
    std::vector<int> items;
    ItemIntMap& index;

    bool rep(int idx) const {
      return items[idx] < 0;
    }

    int repIndex(int idx) const {
      int k = idx;
      while (!rep(k)) {
        k = items[k] ;
      }
      while (idx != k) {
        int next = items[idx];
        const_cast<int&>(items[idx]) = k;
        idx = next;
      }
      return k;
    }

  public:

    /// \brief Constructor
    ///
    /// Constructor of the UnionFind class. You should give an item to
    /// integer map which will be used from the data structure. If you
    /// modify directly this map that may cause segmentation fault,
    /// invalid data structure, or infinite loop when you use again
    /// the union-find.
    UnionFind(ItemIntMap& m) : index(m) {}

    /// \brief Returns the index of the element's component.
    ///
    /// The method returns the index of the element's component.
    /// This is an integer between zero and the number of inserted elements.
    ///
    int find(const Item& a) {
      return repIndex(index[a]);
    }

    /// \brief Clears the union-find data structure
    ///
    /// Erase each item from the data structure.
    void clear() {
      items.clear();
    }

    /// \brief Inserts a new element into the structure.
    ///
    /// This method inserts a new element into the data structure.
    ///
    /// The method returns the index of the new component.
    int insert(const Item& a) {
      int n = items.size();
      items.push_back(-1);
      index.set(a,n);
      return n;
    }

    /// \brief Joining the components of element \e a and element \e b.
    ///
    /// This is the \e union operation of the Union-Find structure.
    /// Joins the component of element \e a and component of
    /// element \e b. If \e a and \e b are in the same component then
    /// it returns false otherwise it returns true.
    bool join(const Item& a, const Item& b) {
      int ka = repIndex(index[a]);
      int kb = repIndex(index[b]);

      if ( ka == kb )
        return false;

      if (items[ka] < items[kb]) {
        items[ka] += items[kb];
        items[kb] = ka;
      } else {
        items[kb] += items[ka];
        items[ka] = kb;
      }
      return true;
    }

    /// \brief Returns the size of the component of element \e a.
    ///
    /// Returns the size of the component of element \e a.
    int size(const Item& a) {
      int k = repIndex(index[a]);
      return - items[k];
    }

  };

  /// \ingroup auxdat
  ///
  /// \brief A \e Union-Find data structure implementation which
  /// is able to enumerate the components.
  ///
  /// The class implements a \e Union-Find data structure
  /// which is able to enumerate the components and the items in
  /// a component. If you don't need this feature then perhaps it's
  /// better to use the \ref UnionFind class which is more efficient.
  ///
  /// The union operation uses rank heuristic, while
  /// the find operation uses path compression.
  ///
  /// \pre You need to add all the elements by the \ref insert()
  /// method.
  ///
  template <typename IM>
  class UnionFindEnum {
  public:

    ///\e
    typedef IM ItemIntMap;
    ///\e
    typedef typename ItemIntMap::Key Item;

  private:

    ItemIntMap& index;

    // If the parent stores negative value for an item then that item
    // is root item and it has ~(items[it].parent) component id.  Else
    // the items[it].parent contains the index of the parent.
    //
    // The \c next and \c prev provides the double-linked
    // cyclic list of one component's items.
    struct ItemT {
      int parent;
      Item item;

      int next, prev;
    };

    std::vector<ItemT> items;
    int firstFreeItem;

    struct ClassT {
      int size;
      int firstItem;
      int next, prev;
    };

    std::vector<ClassT> classes;
    int firstClass, firstFreeClass;

    int newClass() {
      if (firstFreeClass == -1) {
        int cdx = classes.size();
        classes.push_back(ClassT());
        return cdx;
      } else {
        int cdx = firstFreeClass;
        firstFreeClass = classes[firstFreeClass].next;
        return cdx;
      }
    }

    int newItem() {
      if (firstFreeItem == -1) {
        int idx = items.size();
        items.push_back(ItemT());
        return idx;
      } else {
        int idx = firstFreeItem;
        firstFreeItem = items[firstFreeItem].next;
        return idx;
      }
    }


    bool rep(int idx) const {
      return items[idx].parent < 0;
    }

    int repIndex(int idx) const {
      int k = idx;
      while (!rep(k)) {
        k = items[k].parent;
      }
      while (idx != k) {
        int next = items[idx].parent;
        const_cast<int&>(items[idx].parent) = k;
        idx = next;
      }
      return k;
    }

    int classIndex(int idx) const {
      return ~(items[repIndex(idx)].parent);
    }

    void singletonItem(int idx) {
      items[idx].next = idx;
      items[idx].prev = idx;
    }

    void laceItem(int idx, int rdx) {
      items[idx].prev = rdx;
      items[idx].next = items[rdx].next;
      items[items[rdx].next].prev = idx;
      items[rdx].next = idx;
    }

    void unlaceItem(int idx) {
      items[items[idx].prev].next = items[idx].next;
      items[items[idx].next].prev = items[idx].prev;

      items[idx].next = firstFreeItem;
      firstFreeItem = idx;
    }

    void spliceItems(int ak, int bk) {
      items[items[ak].prev].next = bk;
      items[items[bk].prev].next = ak;
      int tmp = items[ak].prev;
      items[ak].prev = items[bk].prev;
      items[bk].prev = tmp;

    }

    void laceClass(int cls) {
      if (firstClass != -1) {
        classes[firstClass].prev = cls;
      }
      classes[cls].next = firstClass;
      classes[cls].prev = -1;
      firstClass = cls;
    }

    void unlaceClass(int cls) {
      if (classes[cls].prev != -1) {
        classes[classes[cls].prev].next = classes[cls].next;
      } else {
        firstClass = classes[cls].next;
      }
      if (classes[cls].next != -1) {
        classes[classes[cls].next].prev = classes[cls].prev;
      }

      classes[cls].next = firstFreeClass;
      firstFreeClass = cls;
    }

  public:

    UnionFindEnum(ItemIntMap& _index)
      : index(_index), items(), firstFreeItem(-1),
        firstClass(-1), firstFreeClass(-1) {}

    /// \brief Inserts the given element into a new component.
    ///
    /// This method creates a new component consisting only of the
    /// given element.
    ///
    int insert(const Item& item) {
      int idx = newItem();

      index.set(item, idx);

      singletonItem(idx);
      items[idx].item = item;

      int cdx = newClass();

      items[idx].parent = ~cdx;

      laceClass(cdx);
      classes[cdx].size = 1;
      classes[cdx].firstItem = idx;

      firstClass = cdx;

      return cdx;
    }

    /// \brief Inserts the given element into the component of the others.
    ///
    /// This methods inserts the element \e a into the component of the
    /// element \e comp.
    void insert(const Item& item, int cls) {
      int rdx = classes[cls].firstItem;
      int idx = newItem();

      index.set(item, idx);

      laceItem(idx, rdx);

      items[idx].item = item;
      items[idx].parent = rdx;

      ++classes[~(items[rdx].parent)].size;
    }

    /// \brief Clears the union-find data structure
    ///
    /// Erase each item from the data structure.
    void clear() {
      items.clear();
      firstClass = -1;
      firstFreeItem = -1;
    }

    /// \brief Finds the component of the given element.
    ///
    /// The method returns the component id of the given element.
    int find(const Item &item) const {
      return ~(items[repIndex(index[item])].parent);
    }

    /// \brief Joining the component of element \e a and element \e b.
    ///
    /// This is the \e union operation of the Union-Find structure.
    /// Joins the component of element \e a and component of
    /// element \e b. If \e a and \e b are in the same component then
    /// returns -1 else returns the remaining class.
    int join(const Item& a, const Item& b) {

      int ak = repIndex(index[a]);
      int bk = repIndex(index[b]);

      if (ak == bk) {
        return -1;
      }

      int acx = ~(items[ak].parent);
      int bcx = ~(items[bk].parent);

      int rcx;

      if (classes[acx].size > classes[bcx].size) {
        classes[acx].size += classes[bcx].size;
        items[bk].parent = ak;
        unlaceClass(bcx);
        rcx = acx;
      } else {
        classes[bcx].size += classes[acx].size;
        items[ak].parent = bk;
        unlaceClass(acx);
        rcx = bcx;
      }
      spliceItems(ak, bk);

      return rcx;
    }

    /// \brief Returns the size of the class.
    ///
    /// Returns the size of the class.
    int size(int cls) const {
      return classes[cls].size;
    }

    /// \brief Splits up the component.
    ///
    /// Splitting the component into singleton components (component
    /// of size one).
    void split(int cls) {
      int fdx = classes[cls].firstItem;
      int idx = items[fdx].next;
      while (idx != fdx) {
        int next = items[idx].next;

        singletonItem(idx);

        int cdx = newClass();
        items[idx].parent = ~cdx;

        laceClass(cdx);
        classes[cdx].size = 1;
        classes[cdx].firstItem = idx;

        idx = next;
      }

      items[idx].prev = idx;
      items[idx].next = idx;

      classes[~(items[idx].parent)].size = 1;

    }

    /// \brief Removes the given element from the structure.
    ///
    /// Removes the element from its component and if the component becomes
    /// empty then removes that component from the component list.
    ///
    /// \warning It is an error to remove an element which is not in
    /// the structure.
    /// \warning This running time of this operation is proportional to the
    /// number of the items in this class.
    void erase(const Item& item) {
      int idx = index[item];
      int fdx = items[idx].next;

      int cdx = classIndex(idx);
      if (idx == fdx) {
        unlaceClass(cdx);
        items[idx].next = firstFreeItem;
        firstFreeItem = idx;
        return;
      } else {
        classes[cdx].firstItem = fdx;
        --classes[cdx].size;
        items[fdx].parent = ~cdx;

        unlaceItem(idx);
        idx = items[fdx].next;
        while (idx != fdx) {
          items[idx].parent = fdx;
          idx = items[idx].next;
        }

      }

    }

    /// \brief Gives back a representant item of the component.
    ///
    /// Gives back a representant item of the component.
    Item item(int cls) const {
      return items[classes[cls].firstItem].item;
    }

    /// \brief Removes the component of the given element from the structure.
    ///
    /// Removes the component of the given element from the structure.
    ///
    /// \warning It is an error to give an element which is not in the
    /// structure.
    void eraseClass(int cls) {
      int fdx = classes[cls].firstItem;
      unlaceClass(cls);
      items[items[fdx].prev].next = firstFreeItem;
      firstFreeItem = fdx;
    }

    /// \brief LEMON style iterator for the representant items.
    ///
    /// ClassIt is a lemon style iterator for the components. It iterates
    /// on the ids of the classes.
    class ClassIt {
    public:
      /// \brief Constructor of the iterator
      ///
      /// Constructor of the iterator
      ClassIt(const UnionFindEnum& ufe) : unionFind(&ufe) {
        cdx = unionFind->firstClass;
      }

      /// \brief Constructor to get invalid iterator
      ///
      /// Constructor to get invalid iterator
      ClassIt(Invalid) : unionFind(0), cdx(-1) {}

      /// \brief Increment operator
      ///
      /// It steps to the next representant item.
      ClassIt& operator++() {
        cdx = unionFind->classes[cdx].next;
        return *this;
      }

      /// \brief Conversion operator
      ///
      /// It converts the iterator to the current representant item.
      operator int() const {
        return cdx;
      }

      /// \brief Equality operator
      ///
      /// Equality operator
      bool operator==(const ClassIt& i) {
        return i.cdx == cdx;
      }

      /// \brief Inequality operator
      ///
      /// Inequality operator
      bool operator!=(const ClassIt& i) {
        return i.cdx != cdx;
      }

    private:
      const UnionFindEnum* unionFind;
      int cdx;
    };

    /// \brief LEMON style iterator for the items of a component.
    ///
    /// ClassIt is a lemon style iterator for the components. It iterates
    /// on the items of a class. By example if you want to iterate on
    /// each items of each classes then you may write the next code.
    ///\code
    /// for (ClassIt cit(ufe); cit != INVALID; ++cit) {
    ///   std::cout << "Class: ";
    ///   for (ItemIt iit(ufe, cit); iit != INVALID; ++iit) {
    ///     std::cout << toString(iit) << ' ' << std::endl;
    ///   }
    ///   std::cout << std::endl;
    /// }
    ///\endcode
    class ItemIt {
    public:
      /// \brief Constructor of the iterator
      ///
      /// Constructor of the iterator. The iterator iterates
      /// on the class of the \c item.
      ItemIt(const UnionFindEnum& ufe, int cls) : unionFind(&ufe) {
        fdx = idx = unionFind->classes[cls].firstItem;
      }

      /// \brief Constructor to get invalid iterator
      ///
      /// Constructor to get invalid iterator
      ItemIt(Invalid) : unionFind(0), idx(-1) {}

      /// \brief Increment operator
      ///
      /// It steps to the next item in the class.
      ItemIt& operator++() {
        idx = unionFind->items[idx].next;
        if (idx == fdx) idx = -1;
        return *this;
      }

      /// \brief Conversion operator
      ///
      /// It converts the iterator to the current item.
      operator const Item&() const {
        return unionFind->items[idx].item;
      }

      /// \brief Equality operator
      ///
      /// Equality operator
      bool operator==(const ItemIt& i) {
        return i.idx == idx;
      }

      /// \brief Inequality operator
      ///
      /// Inequality operator
      bool operator!=(const ItemIt& i) {
        return i.idx != idx;
      }

    private:
      const UnionFindEnum* unionFind;
      int idx, fdx;
    };

  };

  /// \ingroup auxdat
  ///
  /// \brief A \e Extend-Find data structure implementation which
  /// is able to enumerate the components.
  ///
  /// The class implements an \e Extend-Find data structure which is
  /// able to enumerate the components and the items in a
  /// component. The data structure is a simplification of the
  /// Union-Find structure, and it does not allow to merge two components.
  ///
  /// \pre You need to add all the elements by the \ref insert()
  /// method.
  template <typename IM>
  class ExtendFindEnum {
  public:

    ///\e
    typedef IM ItemIntMap;
    ///\e
    typedef typename ItemIntMap::Key Item;

  private:

    ItemIntMap& index;

    struct ItemT {
      int cls;
      Item item;
      int next, prev;
    };

    std::vector<ItemT> items;
    int firstFreeItem;

    struct ClassT {
      int firstItem;
      int next, prev;
    };

    std::vector<ClassT> classes;

    int firstClass, firstFreeClass;

    int newClass() {
      if (firstFreeClass != -1) {
        int cdx = firstFreeClass;
        firstFreeClass = classes[cdx].next;
        return cdx;
      } else {
        classes.push_back(ClassT());
        return classes.size() - 1;
      }
    }

    int newItem() {
      if (firstFreeItem != -1) {
        int idx = firstFreeItem;
        firstFreeItem = items[idx].next;
        return idx;
      } else {
        items.push_back(ItemT());
        return items.size() - 1;
      }
    }

  public:

    /// \brief Constructor
    ExtendFindEnum(ItemIntMap& _index)
      : index(_index), items(), firstFreeItem(-1),
        classes(), firstClass(-1), firstFreeClass(-1) {}

    /// \brief Inserts the given element into a new component.
    ///
    /// This method creates a new component consisting only of the
    /// given element.
    int insert(const Item& item) {
      int cdx = newClass();
      classes[cdx].prev = -1;
      classes[cdx].next = firstClass;
      if (firstClass != -1) {
        classes[firstClass].prev = cdx;
      }
      firstClass = cdx;

      int idx = newItem();
      items[idx].item = item;
      items[idx].cls = cdx;
      items[idx].prev = idx;
      items[idx].next = idx;

      classes[cdx].firstItem = idx;

      index.set(item, idx);

      return cdx;
    }

    /// \brief Inserts the given element into the given component.
    ///
    /// This methods inserts the element \e item a into the \e cls class.
    void insert(const Item& item, int cls) {
      int idx = newItem();
      int rdx = classes[cls].firstItem;
      items[idx].item = item;
      items[idx].cls = cls;

      items[idx].prev = rdx;
      items[idx].next = items[rdx].next;
      items[items[rdx].next].prev = idx;
      items[rdx].next = idx;

      index.set(item, idx);
    }

    /// \brief Clears the union-find data structure
    ///
    /// Erase each item from the data structure.
    void clear() {
      items.clear();
      classes.clear();
      firstClass = firstFreeClass = firstFreeItem = -1;
    }

    /// \brief Gives back the class of the \e item.
    ///
    /// Gives back the class of the \e item.
    int find(const Item &item) const {
      return items[index[item]].cls;
    }

    /// \brief Gives back a representant item of the component.
    ///
    /// Gives back a representant item of the component.
    Item item(int cls) const {
      return items[classes[cls].firstItem].item;
    }

    /// \brief Removes the given element from the structure.
    ///
    /// Removes the element from its component and if the component becomes
    /// empty then removes that component from the component list.
    ///
    /// \warning It is an error to remove an element which is not in
    /// the structure.
    void erase(const Item &item) {
      int idx = index[item];
      int cdx = items[idx].cls;

      if (idx == items[idx].next) {
        if (classes[cdx].prev != -1) {
          classes[classes[cdx].prev].next = classes[cdx].next;
        } else {
          firstClass = classes[cdx].next;
        }
        if (classes[cdx].next != -1) {
          classes[classes[cdx].next].prev = classes[cdx].prev;
        }
        classes[cdx].next = firstFreeClass;
        firstFreeClass = cdx;
      } else {
        classes[cdx].firstItem = items[idx].next;
        items[items[idx].next].prev = items[idx].prev;
        items[items[idx].prev].next = items[idx].next;
      }
      items[idx].next = firstFreeItem;
      firstFreeItem = idx;

    }


    /// \brief Removes the component of the given element from the structure.
    ///
    /// Removes the component of the given element from the structure.
    ///
    /// \warning It is an error to give an element which is not in the
    /// structure.
    void eraseClass(int cdx) {
      int idx = classes[cdx].firstItem;
      items[items[idx].prev].next = firstFreeItem;
      firstFreeItem = idx;

      if (classes[cdx].prev != -1) {
        classes[classes[cdx].prev].next = classes[cdx].next;
      } else {
        firstClass = classes[cdx].next;
      }
      if (classes[cdx].next != -1) {
        classes[classes[cdx].next].prev = classes[cdx].prev;
      }
      classes[cdx].next = firstFreeClass;
      firstFreeClass = cdx;
    }

    /// \brief LEMON style iterator for the classes.
    ///
    /// ClassIt is a lemon style iterator for the components. It iterates
    /// on the ids of classes.
    class ClassIt {
    public:
      /// \brief Constructor of the iterator
      ///
      /// Constructor of the iterator
      ClassIt(const ExtendFindEnum& ufe) : extendFind(&ufe) {
        cdx = extendFind->firstClass;
      }

      /// \brief Constructor to get invalid iterator
      ///
      /// Constructor to get invalid iterator
      ClassIt(Invalid) : extendFind(0), cdx(-1) {}

      /// \brief Increment operator
      ///
      /// It steps to the next representant item.
      ClassIt& operator++() {
        cdx = extendFind->classes[cdx].next;
        return *this;
      }

      /// \brief Conversion operator
      ///
      /// It converts the iterator to the current class id.
      operator int() const {
        return cdx;
      }

      /// \brief Equality operator
      ///
      /// Equality operator
      bool operator==(const ClassIt& i) {
        return i.cdx == cdx;
      }

      /// \brief Inequality operator
      ///
      /// Inequality operator
      bool operator!=(const ClassIt& i) {
        return i.cdx != cdx;
      }

    private:
      const ExtendFindEnum* extendFind;
      int cdx;
    };

    /// \brief LEMON style iterator for the items of a component.
    ///
    /// ClassIt is a lemon style iterator for the components. It iterates
    /// on the items of a class. By example if you want to iterate on
    /// each items of each classes then you may write the next code.
    ///\code
    /// for (ClassIt cit(ufe); cit != INVALID; ++cit) {
    ///   std::cout << "Class: ";
    ///   for (ItemIt iit(ufe, cit); iit != INVALID; ++iit) {
    ///     std::cout << toString(iit) << ' ' << std::endl;
    ///   }
    ///   std::cout << std::endl;
    /// }
    ///\endcode
    class ItemIt {
    public:
      /// \brief Constructor of the iterator
      ///
      /// Constructor of the iterator. The iterator iterates
      /// on the class of the \c item.
      ItemIt(const ExtendFindEnum& ufe, int cls) : extendFind(&ufe) {
        fdx = idx = extendFind->classes[cls].firstItem;
      }

      /// \brief Constructor to get invalid iterator
      ///
      /// Constructor to get invalid iterator
      ItemIt(Invalid) : extendFind(0), idx(-1) {}

      /// \brief Increment operator
      ///
      /// It steps to the next item in the class.
      ItemIt& operator++() {
        idx = extendFind->items[idx].next;
        if (fdx == idx) idx = -1;
        return *this;
      }

      /// \brief Conversion operator
      ///
      /// It converts the iterator to the current item.
      operator const Item&() const {
        return extendFind->items[idx].item;
      }

      /// \brief Equality operator
      ///
      /// Equality operator
      bool operator==(const ItemIt& i) {
        return i.idx == idx;
      }

      /// \brief Inequality operator
      ///
      /// Inequality operator
      bool operator!=(const ItemIt& i) {
        return i.idx != idx;
      }

    private:
      const ExtendFindEnum* extendFind;
      int idx, fdx;
    };

  };

  /// \ingroup auxdat
  ///
  /// \brief A \e Union-Find data structure implementation which
  /// is able to store a priority for each item and retrieve the minimum of
  /// each class.
  ///
  /// A \e Union-Find data structure implementation which is able to
  /// store a priority for each item and retrieve the minimum of each
  /// class. In addition, it supports the joining and splitting the
  /// components. If you don't need this feature then you makes
  /// better to use the \ref UnionFind class which is more efficient.
  ///
  /// The union-find data strcuture based on a (2, 16)-tree with a
  /// tournament minimum selection on the internal nodes. The insert
  /// operation takes O(1), the find, set, decrease and increase takes
  /// O(log(n)), where n is the number of nodes in the current
  /// component.  The complexity of join and split is O(log(n)*k),
  /// where n is the sum of the number of the nodes and k is the
  /// number of joined components or the number of the components
  /// after the split.
  ///
  /// \pre You need to add all the elements by the \ref insert()
  /// method.
  template <typename V, typename IM, typename Comp = std::less<V> >
  class HeapUnionFind {
  public:

    ///\e
    typedef V Value;
    ///\e
    typedef typename IM::Key Item;
    ///\e
    typedef IM ItemIntMap;
    ///\e
    typedef Comp Compare;

  private:

    static const int cmax = 16;

    ItemIntMap& index;

    struct ClassNode {
      int parent;
      int depth;

      int left, right;
      int next, prev;
    };

    int first_class;
    int first_free_class;
    std::vector<ClassNode> classes;

    int newClass() {
      if (first_free_class < 0) {
        int id = classes.size();
        classes.push_back(ClassNode());
        return id;
      } else {
        int id = first_free_class;
        first_free_class = classes[id].next;
        return id;
      }
    }

    void deleteClass(int id) {
      classes[id].next = first_free_class;
      first_free_class = id;
    }

    struct ItemNode {
      int parent;
      Item item;
      Value prio;
      int next, prev;
      int left, right;
      int size;
    };

    int first_free_node;
    std::vector<ItemNode> nodes;

    int newNode() {
      if (first_free_node < 0) {
        int id = nodes.size();
        nodes.push_back(ItemNode());
        return id;
      } else {
        int id = first_free_node;
        first_free_node = nodes[id].next;
        return id;
      }
    }

    void deleteNode(int id) {
      nodes[id].next = first_free_node;
      first_free_node = id;
    }

    Comp comp;

    int findClass(int id) const {
      int kd = id;
      while (kd >= 0) {
        kd = nodes[kd].parent;
      }
      return ~kd;
    }

    int leftNode(int id) const {
      int kd = ~(classes[id].parent);
      for (int i = 0; i < classes[id].depth; ++i) {
        kd = nodes[kd].left;
      }
      return kd;
    }

    int nextNode(int id) const {
      int depth = 0;
      while (id >= 0 && nodes[id].next == -1) {
        id = nodes[id].parent;
        ++depth;
      }
      if (id < 0) {
        return -1;
      }
      id = nodes[id].next;
      while (depth--) {
        id = nodes[id].left;
      }
      return id;
    }


    void setPrio(int id) {
      int jd = nodes[id].left;
      nodes[id].prio = nodes[jd].prio;
      nodes[id].item = nodes[jd].item;
      jd = nodes[jd].next;
      while (jd != -1) {
        if (comp(nodes[jd].prio, nodes[id].prio)) {
          nodes[id].prio = nodes[jd].prio;
          nodes[id].item = nodes[jd].item;
        }
        jd = nodes[jd].next;
      }
    }

    void push(int id, int jd) {
      nodes[id].size = 1;
      nodes[id].left = nodes[id].right = jd;
      nodes[jd].next = nodes[jd].prev = -1;
      nodes[jd].parent = id;
    }

    void pushAfter(int id, int jd) {
      int kd = nodes[id].parent;
      if (nodes[id].next != -1) {
        nodes[nodes[id].next].prev = jd;
        if (kd >= 0) {
          nodes[kd].size += 1;
        }
      } else {
        if (kd >= 0) {
          nodes[kd].right = jd;
          nodes[kd].size += 1;
        }
      }
      nodes[jd].next = nodes[id].next;
      nodes[jd].prev = id;
      nodes[id].next = jd;
      nodes[jd].parent = kd;
    }

    void pushRight(int id, int jd) {
      nodes[id].size += 1;
      nodes[jd].prev = nodes[id].right;
      nodes[jd].next = -1;
      nodes[nodes[id].right].next = jd;
      nodes[id].right = jd;
      nodes[jd].parent = id;
    }

    void popRight(int id) {
      nodes[id].size -= 1;
      int jd = nodes[id].right;
      nodes[nodes[jd].prev].next = -1;
      nodes[id].right = nodes[jd].prev;
    }

    void splice(int id, int jd) {
      nodes[id].size += nodes[jd].size;
      nodes[nodes[id].right].next = nodes[jd].left;
      nodes[nodes[jd].left].prev = nodes[id].right;
      int kd = nodes[jd].left;
      while (kd != -1) {
        nodes[kd].parent = id;
        kd = nodes[kd].next;
      }
      nodes[id].right = nodes[jd].right;
    }

    void split(int id, int jd) {
      int kd = nodes[id].parent;
      nodes[kd].right = nodes[id].prev;
      nodes[nodes[id].prev].next = -1;

      nodes[jd].left = id;
      nodes[id].prev = -1;
      int num = 0;
      while (id != -1) {
        nodes[id].parent = jd;
        nodes[jd].right = id;
        id = nodes[id].next;
        ++num;
      }
      nodes[kd].size -= num;
      nodes[jd].size = num;
    }

    void pushLeft(int id, int jd) {
      nodes[id].size += 1;
      nodes[jd].next = nodes[id].left;
      nodes[jd].prev = -1;
      nodes[nodes[id].left].prev = jd;
      nodes[id].left = jd;
      nodes[jd].parent = id;
    }

    void popLeft(int id) {
      nodes[id].size -= 1;
      int jd = nodes[id].left;
      nodes[nodes[jd].next].prev = -1;
      nodes[id].left = nodes[jd].next;
    }

    void repairLeft(int id) {
      int jd = ~(classes[id].parent);
      while (nodes[jd].left != -1) {
        int kd = nodes[jd].left;
        if (nodes[jd].size == 1) {
          if (nodes[jd].parent < 0) {
            classes[id].parent = ~kd;
            classes[id].depth -= 1;
            nodes[kd].parent = ~id;
            deleteNode(jd);
            jd = kd;
          } else {
            int pd = nodes[jd].parent;
            if (nodes[nodes[jd].next].size < cmax) {
              pushLeft(nodes[jd].next, nodes[jd].left);
              if (less(jd, nodes[jd].next) ||
                  nodes[jd].item == nodes[pd].item) {
                nodes[nodes[jd].next].prio = nodes[jd].prio;
                nodes[nodes[jd].next].item = nodes[jd].item;
              }
              popLeft(pd);
              deleteNode(jd);
              jd = pd;
            } else {
              int ld = nodes[nodes[jd].next].left;
              popLeft(nodes[jd].next);
              pushRight(jd, ld);
              if (less(ld, nodes[jd].left) ||
                  nodes[ld].item == nodes[pd].item) {
                nodes[jd].item = nodes[ld].item;
                nodes[jd].prio = nodes[ld].prio;
              }
              if (nodes[nodes[jd].next].item == nodes[ld].item) {
                setPrio(nodes[jd].next);
              }
              jd = nodes[jd].left;
            }
          }
        } else {
          jd = nodes[jd].left;
        }
      }
    }

    void repairRight(int id) {
      int jd = ~(classes[id].parent);
      while (nodes[jd].right != -1) {
        int kd = nodes[jd].right;
        if (nodes[jd].size == 1) {
          if (nodes[jd].parent < 0) {
            classes[id].parent = ~kd;
            classes[id].depth -= 1;
            nodes[kd].parent = ~id;
            deleteNode(jd);
            jd = kd;
          } else {
            int pd = nodes[jd].parent;
            if (nodes[nodes[jd].prev].size < cmax) {
              pushRight(nodes[jd].prev, nodes[jd].right);
              if (less(jd, nodes[jd].prev) ||
                  nodes[jd].item == nodes[pd].item) {
                nodes[nodes[jd].prev].prio = nodes[jd].prio;
                nodes[nodes[jd].prev].item = nodes[jd].item;
              }
              popRight(pd);
              deleteNode(jd);
              jd = pd;
            } else {
              int ld = nodes[nodes[jd].prev].right;
              popRight(nodes[jd].prev);
              pushLeft(jd, ld);
              if (less(ld, nodes[jd].right) ||
                  nodes[ld].item == nodes[pd].item) {
                nodes[jd].item = nodes[ld].item;
                nodes[jd].prio = nodes[ld].prio;
              }
              if (nodes[nodes[jd].prev].item == nodes[ld].item) {
                setPrio(nodes[jd].prev);
              }
              jd = nodes[jd].right;
            }
          }
        } else {
          jd = nodes[jd].right;
        }
      }
    }


    bool less(int id, int jd) const {
      return comp(nodes[id].prio, nodes[jd].prio);
    }

  public:

    /// \brief Returns true when the given class is alive.
    ///
    /// Returns true when the given class is alive, ie. the class is
    /// not nested into other class.
    bool alive(int cls) const {
      return classes[cls].parent < 0;
    }

    /// \brief Returns true when the given class is trivial.
    ///
    /// Returns true when the given class is trivial, ie. the class
    /// contains just one item directly.
    bool trivial(int cls) const {
      return classes[cls].left == -1;
    }

    /// \brief Constructs the union-find.
    ///
    /// Constructs the union-find.
    /// \brief _index The index map of the union-find. The data
    /// structure uses internally for store references.
    HeapUnionFind(ItemIntMap& _index)
      : index(_index), first_class(-1),
        first_free_class(-1), first_free_node(-1) {}

    /// \brief Clears the union-find data structure
    ///
    /// Erase each item from the data structure.
    void clear() {
      nodes.clear();
      classes.clear();
      first_free_node = first_free_class = first_class = -1;
    }

    /// \brief Insert a new node into a new component.
    ///
    /// Insert a new node into a new component.
    /// \param item The item of the new node.
    /// \param prio The priority of the new node.
    /// \return The class id of the one-item-heap.
    int insert(const Item& item, const Value& prio) {
      int id = newNode();
      nodes[id].item = item;
      nodes[id].prio = prio;
      nodes[id].size = 0;

      nodes[id].prev = -1;
      nodes[id].next = -1;

      nodes[id].left = -1;
      nodes[id].right = -1;

      nodes[id].item = item;
      index[item] = id;

      int class_id = newClass();
      classes[class_id].parent = ~id;
      classes[class_id].depth = 0;

      classes[class_id].left = -1;
      classes[class_id].right = -1;

      if (first_class != -1) {
        classes[first_class].prev = class_id;
      }
      classes[class_id].next = first_class;
      classes[class_id].prev = -1;
      first_class = class_id;

      nodes[id].parent = ~class_id;

      return class_id;
    }

    /// \brief The class of the item.
    ///
    /// \return The alive class id of the item, which is not nested into
    /// other classes.
    ///
    /// The time complexity is O(log(n)).
    int find(const Item& item) const {
      return findClass(index[item]);
    }

    /// \brief Joins the classes.
    ///
    /// The current function joins the given classes. The parameter is
    /// an STL range which should be contains valid class ids. The
    /// time complexity is O(log(n)*k) where n is the overall number
    /// of the joined nodes and k is the number of classes.
    /// \return The class of the joined classes.
    /// \pre The range should contain at least two class ids.
    template <typename Iterator>
    int join(Iterator begin, Iterator end) {
      std::vector<int> cs;
      for (Iterator it = begin; it != end; ++it) {
        cs.push_back(*it);
      }

      int class_id = newClass();
      { // creation union-find

        if (first_class != -1) {
          classes[first_class].prev = class_id;
        }
        classes[class_id].next = first_class;
        classes[class_id].prev = -1;
        first_class = class_id;

        classes[class_id].depth = classes[cs[0]].depth;
        classes[class_id].parent = classes[cs[0]].parent;
        nodes[~(classes[class_id].parent)].parent = ~class_id;

        int l = cs[0];

        classes[class_id].left = l;
        classes[class_id].right = l;

        if (classes[l].next != -1) {
          classes[classes[l].next].prev = classes[l].prev;
        }
        classes[classes[l].prev].next = classes[l].next;

        classes[l].prev = -1;
        classes[l].next = -1;

        classes[l].depth = leftNode(l);
        classes[l].parent = class_id;

      }

      { // merging of heap
        int l = class_id;
        for (int ci = 1; ci < int(cs.size()); ++ci) {
          int r = cs[ci];
          int rln = leftNode(r);
          if (classes[l].depth > classes[r].depth) {
            int id = ~(classes[l].parent);
            for (int i = classes[r].depth + 1; i < classes[l].depth; ++i) {
              id = nodes[id].right;
            }
            while (id >= 0 && nodes[id].size == cmax) {
              int new_id = newNode();
              int right_id = nodes[id].right;

              popRight(id);
              if (nodes[id].item == nodes[right_id].item) {
                setPrio(id);
              }
              push(new_id, right_id);
              pushRight(new_id, ~(classes[r].parent));

              if (less(~classes[r].parent, right_id)) {
                nodes[new_id].item = nodes[~classes[r].parent].item;
                nodes[new_id].prio = nodes[~classes[r].parent].prio;
              } else {
                nodes[new_id].item = nodes[right_id].item;
                nodes[new_id].prio = nodes[right_id].prio;
              }

              id = nodes[id].parent;
              classes[r].parent = ~new_id;
            }
            if (id < 0) {
              int new_parent = newNode();
              nodes[new_parent].next = -1;
              nodes[new_parent].prev = -1;
              nodes[new_parent].parent = ~l;

              push(new_parent, ~(classes[l].parent));
              pushRight(new_parent, ~(classes[r].parent));
              setPrio(new_parent);

              classes[l].parent = ~new_parent;
              classes[l].depth += 1;
            } else {
              pushRight(id, ~(classes[r].parent));
              while (id >= 0 && less(~(classes[r].parent), id)) {
                nodes[id].prio = nodes[~(classes[r].parent)].prio;
                nodes[id].item = nodes[~(classes[r].parent)].item;
                id = nodes[id].parent;
              }
            }
          } else if (classes[r].depth > classes[l].depth) {
            int id = ~(classes[r].parent);
            for (int i = classes[l].depth + 1; i < classes[r].depth; ++i) {
              id = nodes[id].left;
            }
            while (id >= 0 && nodes[id].size == cmax) {
              int new_id = newNode();
              int left_id = nodes[id].left;

              popLeft(id);
              if (nodes[id].prio == nodes[left_id].prio) {
                setPrio(id);
              }
              push(new_id, left_id);
              pushLeft(new_id, ~(classes[l].parent));

              if (less(~classes[l].parent, left_id)) {
                nodes[new_id].item = nodes[~classes[l].parent].item;
                nodes[new_id].prio = nodes[~classes[l].parent].prio;
              } else {
                nodes[new_id].item = nodes[left_id].item;
                nodes[new_id].prio = nodes[left_id].prio;
              }

              id = nodes[id].parent;
              classes[l].parent = ~new_id;

            }
            if (id < 0) {
              int new_parent = newNode();
              nodes[new_parent].next = -1;
              nodes[new_parent].prev = -1;
              nodes[new_parent].parent = ~l;

              push(new_parent, ~(classes[r].parent));
              pushLeft(new_parent, ~(classes[l].parent));
              setPrio(new_parent);

              classes[r].parent = ~new_parent;
              classes[r].depth += 1;
            } else {
              pushLeft(id, ~(classes[l].parent));
              while (id >= 0 && less(~(classes[l].parent), id)) {
                nodes[id].prio = nodes[~(classes[l].parent)].prio;
                nodes[id].item = nodes[~(classes[l].parent)].item;
                id = nodes[id].parent;
              }
            }
            nodes[~(classes[r].parent)].parent = ~l;
            classes[l].parent = classes[r].parent;
            classes[l].depth = classes[r].depth;
          } else {
            if (classes[l].depth != 0 &&
                nodes[~(classes[l].parent)].size +
                nodes[~(classes[r].parent)].size <= cmax) {
              splice(~(classes[l].parent), ~(classes[r].parent));
              deleteNode(~(classes[r].parent));
              if (less(~(classes[r].parent), ~(classes[l].parent))) {
                nodes[~(classes[l].parent)].prio =
                  nodes[~(classes[r].parent)].prio;
                nodes[~(classes[l].parent)].item =
                  nodes[~(classes[r].parent)].item;
              }
            } else {
              int new_parent = newNode();
              nodes[new_parent].next = nodes[new_parent].prev = -1;
              push(new_parent, ~(classes[l].parent));
              pushRight(new_parent, ~(classes[r].parent));
              setPrio(new_parent);

              classes[l].parent = ~new_parent;
              classes[l].depth += 1;
              nodes[new_parent].parent = ~l;
            }
          }
          if (classes[r].next != -1) {
            classes[classes[r].next].prev = classes[r].prev;
          }
          classes[classes[r].prev].next = classes[r].next;

          classes[r].prev = classes[l].right;
          classes[classes[l].right].next = r;
          classes[l].right = r;
          classes[r].parent = l;

          classes[r].next = -1;
          classes[r].depth = rln;
        }
      }
      return class_id;
    }

    /// \brief Split the class to subclasses.
    ///
    /// The current function splits the given class. The join, which
    /// made the current class, stored a reference to the
    /// subclasses. The \c splitClass() member restores the classes
    /// and creates the heaps. The parameter is an STL output iterator
    /// which will be filled with the subclass ids. The time
    /// complexity is O(log(n)*k) where n is the overall number of
    /// nodes in the splitted classes and k is the number of the
    /// classes.
    template <typename Iterator>
    void split(int cls, Iterator out) {
      std::vector<int> cs;
      { // splitting union-find
        int id = cls;
        int l = classes[id].left;

        classes[l].parent = classes[id].parent;
        classes[l].depth = classes[id].depth;

        nodes[~(classes[l].parent)].parent = ~l;

        *out++ = l;

        while (l != -1) {
          cs.push_back(l);
          l = classes[l].next;
        }

        classes[classes[id].right].next = first_class;
        classes[first_class].prev = classes[id].right;
        first_class = classes[id].left;

        if (classes[id].next != -1) {
          classes[classes[id].next].prev = classes[id].prev;
        }
        classes[classes[id].prev].next = classes[id].next;

        deleteClass(id);
      }

      {
        for (int i = 1; i < int(cs.size()); ++i) {
          int l = classes[cs[i]].depth;
          while (nodes[nodes[l].parent].left == l) {
            l = nodes[l].parent;
          }
          int r = l;
          while (nodes[l].parent >= 0) {
            l = nodes[l].parent;
            int new_node = newNode();

            nodes[new_node].prev = -1;
            nodes[new_node].next = -1;

            split(r, new_node);
            pushAfter(l, new_node);
            setPrio(l);
            setPrio(new_node);
            r = new_node;
          }
          classes[cs[i]].parent = ~r;
          classes[cs[i]].depth = classes[~(nodes[l].parent)].depth;
          nodes[r].parent = ~cs[i];

          nodes[l].next = -1;
          nodes[r].prev = -1;

          repairRight(~(nodes[l].parent));
          repairLeft(cs[i]);

          *out++ = cs[i];
        }
      }
    }

    /// \brief Gives back the priority of the current item.
    ///
    /// Gives back the priority of the current item.
    const Value& operator[](const Item& item) const {
      return nodes[index[item]].prio;
    }

    /// \brief Sets the priority of the current item.
    ///
    /// Sets the priority of the current item.
    void set(const Item& item, const Value& prio) {
      if (comp(prio, nodes[index[item]].prio)) {
        decrease(item, prio);
      } else if (!comp(prio, nodes[index[item]].prio)) {
        increase(item, prio);
      }
    }

    /// \brief Increase the priority of the current item.
    ///
    /// Increase the priority of the current item.
    void increase(const Item& item, const Value& prio) {
      int id = index[item];
      int kd = nodes[id].parent;
      nodes[id].prio = prio;
      while (kd >= 0 && nodes[kd].item == item) {
        setPrio(kd);
        kd = nodes[kd].parent;
      }
    }

    /// \brief Increase the priority of the current item.
    ///
    /// Increase the priority of the current item.
    void decrease(const Item& item, const Value& prio) {
      int id = index[item];
      int kd = nodes[id].parent;
      nodes[id].prio = prio;
      while (kd >= 0 && less(id, kd)) {
        nodes[kd].prio = prio;
        nodes[kd].item = item;
        kd = nodes[kd].parent;
      }
    }

    /// \brief Gives back the minimum priority of the class.
    ///
    /// Gives back the minimum priority of the class.
    const Value& classPrio(int cls) const {
      return nodes[~(classes[cls].parent)].prio;
    }

    /// \brief Gives back the minimum priority item of the class.
    ///
    /// \return Gives back the minimum priority item of the class.
    const Item& classTop(int cls) const {
      return nodes[~(classes[cls].parent)].item;
    }

    /// \brief Gives back a representant item of the class.
    ///
    /// Gives back a representant item of the class.
    /// The representant is indpendent from the priorities of the
    /// items.
    const Item& classRep(int id) const {
      int parent = classes[id].parent;
      return nodes[parent >= 0 ? classes[id].depth : leftNode(id)].item;
    }

    /// \brief LEMON style iterator for the items of a class.
    ///
    /// ClassIt is a lemon style iterator for the components. It iterates
    /// on the items of a class. By example if you want to iterate on
    /// each items of each classes then you may write the next code.
    ///\code
    /// for (ClassIt cit(huf); cit != INVALID; ++cit) {
    ///   std::cout << "Class: ";
    ///   for (ItemIt iit(huf, cit); iit != INVALID; ++iit) {
    ///     std::cout << toString(iit) << ' ' << std::endl;
    ///   }
    ///   std::cout << std::endl;
    /// }
    ///\endcode
    class ItemIt {
    private:

      const HeapUnionFind* _huf;
      int _id, _lid;

    public:

      /// \brief Default constructor
      ///
      /// Default constructor
      ItemIt() {}

      ItemIt(const HeapUnionFind& huf, int cls) : _huf(&huf) {
        int id = cls;
        int parent = _huf->classes[id].parent;
        if (parent >= 0) {
          _id = _huf->classes[id].depth;
          if (_huf->classes[id].next != -1) {
            _lid = _huf->classes[_huf->classes[id].next].depth;
          } else {
            _lid = -1;
          }
        } else {
          _id = _huf->leftNode(id);
          _lid = -1;
        }
      }

      /// \brief Increment operator
      ///
      /// It steps to the next item in the class.
      ItemIt& operator++() {
        _id = _huf->nextNode(_id);
        return *this;
      }

      /// \brief Conversion operator
      ///
      /// It converts the iterator to the current item.
      operator const Item&() const {
        return _huf->nodes[_id].item;
      }

      /// \brief Equality operator
      ///
      /// Equality operator
      bool operator==(const ItemIt& i) {
        return i._id == _id;
      }

      /// \brief Inequality operator
      ///
      /// Inequality operator
      bool operator!=(const ItemIt& i) {
        return i._id != _id;
      }

      /// \brief Equality operator
      ///
      /// Equality operator
      bool operator==(Invalid) {
        return _id == _lid;
      }

      /// \brief Inequality operator
      ///
      /// Inequality operator
      bool operator!=(Invalid) {
        return _id != _lid;
      }

    };

    /// \brief Class iterator
    ///
    /// The iterator stores
    class ClassIt {
    private:

      const HeapUnionFind* _huf;
      int _id;

    public:

      ClassIt(const HeapUnionFind& huf)
        : _huf(&huf), _id(huf.first_class) {}

      ClassIt(const HeapUnionFind& huf, int cls)
        : _huf(&huf), _id(huf.classes[cls].left) {}

      ClassIt(Invalid) : _huf(0), _id(-1) {}

      const ClassIt& operator++() {
        _id = _huf->classes[_id].next;
        return *this;
      }

      /// \brief Equality operator
      ///
      /// Equality operator
      bool operator==(const ClassIt& i) {
        return i._id == _id;
      }

      /// \brief Inequality operator
      ///
      /// Inequality operator
      bool operator!=(const ClassIt& i) {
        return i._id != _id;
      }

      operator int() const {
        return _id;
      }

    };

  };

  //! @}

} //namespace lemon

#endif //LEMON_UNION_FIND_H