Welcome to mirror list, hosted at ThFree Co, Russian Federation.

main.cpp « src « quadriflow « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 18bc4063c428fe723eb60ef4798200c3e0adc86f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
#include "config.hpp"
#include "field-math.hpp"
#include "optimizer.hpp"
#include "parametrizer.hpp"
#include <stdlib.h>

#ifdef WITH_CUDA
#include <cuda_runtime.h>
#endif

using namespace qflow;

Parametrizer field;

int main(int argc, char** argv) {
    setbuf(stdout, NULL);

#ifdef WITH_CUDA
    cudaFree(0);
#endif
    int t1, t2;
    std::string input_obj, output_obj;
    int faces = -1;
    for (int i = 0; i < argc; ++i) {
        if (strcmp(argv[i], "-f") == 0) {
            sscanf(argv[i + 1], "%d", &faces);
        } else if (strcmp(argv[i], "-i") == 0) {
            input_obj = argv[i + 1];
        } else if (strcmp(argv[i], "-o") == 0) {
            output_obj = argv[i + 1];
        } else if (strcmp(argv[i], "-sharp") == 0) {
            field.flag_preserve_sharp = 1;
        } else if (strcmp(argv[i], "-boundary") == 0) {
            field.flag_preserve_boundary = 1;
        } else if (strcmp(argv[i], "-adaptive") == 0) {
            field.flag_adaptive_scale = 1;
        } else if (strcmp(argv[i], "-mcf") == 0) {
            field.flag_minimum_cost_flow = 1;
        } else if (strcmp(argv[i], "-sat") == 0) {
            field.flag_aggresive_sat = 1;
        } else if (strcmp(argv[i], "-seed") == 0) {
            field.hierarchy.rng_seed = atoi(argv[i + 1]);
        }
    }
    printf("%d %s %s\n", faces, input_obj.c_str(), output_obj.c_str());
    if (input_obj.size() >= 1) {
        field.Load(input_obj.c_str());
    } else {
        assert(0);
        // field.Load((std::string(DATA_PATH) + "/fertility.obj").c_str());
    }

    printf("Initialize...\n");
    t1 = GetCurrentTime64();
    field.Initialize(faces);
    t2 = GetCurrentTime64();
    printf("Use %lf seconds\n", (t2 - t1) * 1e-3);

    if (field.flag_preserve_boundary) {
        printf("Add boundary constrains...\n");
        Hierarchy& mRes = field.hierarchy;
        mRes.clearConstraints();
        for (uint32_t i = 0; i < 3 * mRes.mF.cols(); ++i) {
            if (mRes.mE2E[i] == -1) {
                uint32_t i0 = mRes.mF(i % 3, i / 3);
                uint32_t i1 = mRes.mF((i + 1) % 3, i / 3);
                Vector3d p0 = mRes.mV[0].col(i0), p1 = mRes.mV[0].col(i1);
                Vector3d edge = p1 - p0;
                if (edge.squaredNorm() > 0) {
                    edge.normalize();
                    mRes.mCO[0].col(i0) = p0;
                    mRes.mCO[0].col(i1) = p1;
                    mRes.mCQ[0].col(i0) = mRes.mCQ[0].col(i1) = edge;
                    mRes.mCQw[0][i0] = mRes.mCQw[0][i1] = mRes.mCOw[0][i0] = mRes.mCOw[0][i1] =
                        1.0;
                }
            }
        }
        mRes.propagateConstraints();
    }

    printf("Solve Orientation Field...\n");
    t1 = GetCurrentTime64();

    Optimizer::optimize_orientations(field.hierarchy);
    field.ComputeOrientationSingularities();
    t2 = GetCurrentTime64();
    printf("Use %lf seconds\n", (t2 - t1) * 1e-3);

    if (field.flag_adaptive_scale == 1) {
        printf("Estimate Slop...\n");
        t1 = GetCurrentTime64();
        field.EstimateSlope();
        t2 = GetCurrentTime64();
        printf("Use %lf seconds\n", (t2 - t1) * 1e-3);
    }
    printf("Solve for scale...\n");
    t1 = GetCurrentTime64();
    Optimizer::optimize_scale(field.hierarchy, field.rho, field.flag_adaptive_scale);
    field.flag_adaptive_scale = 1;
    t2 = GetCurrentTime64();
    printf("Use %lf seconds\n", (t2 - t1) * 1e-3);

    printf("Solve for position field...\n");
    t1 = GetCurrentTime64();
    Optimizer::optimize_positions(field.hierarchy, field.flag_adaptive_scale);

    field.ComputePositionSingularities();
    t2 = GetCurrentTime64();
    printf("Use %lf seconds\n", (t2 - t1) * 1e-3);
    t1 = GetCurrentTime64();
    printf("Solve index map...\n");
    field.ComputeIndexMap();
    t2 = GetCurrentTime64();
    printf("Indexmap Use %lf seconds\n", (t2 - t1) * 1e-3);
    printf("Writing the file...\n");

    if (output_obj.size() < 1) {
        assert(0);
        // field.OutputMesh((std::string(DATA_PATH) + "/result.obj").c_str());
    } else {
        field.OutputMesh(output_obj.c_str());
    }
    printf("finish...\n");
    //	field.LoopFace(2);
    return 0;
}