Welcome to mirror list, hosted at ThFree Co, Russian Federation.

parametrizer-sing.cpp « src « quadriflow « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 2d600e3cda46351dfbc3b600dc55d51ec18e5271 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
#include "config.hpp"
#include "field-math.hpp"
#include "parametrizer.hpp"

namespace qflow {

void Parametrizer::ComputeOrientationSingularities() {
    MatrixXd &N = hierarchy.mN[0], &Q = hierarchy.mQ[0];
    const MatrixXi& F = hierarchy.mF;
    singularities.clear();
    for (int f = 0; f < F.cols(); ++f) {
        int index = 0;
        int abs_index = 0;
        for (int k = 0; k < 3; ++k) {
            int i = F(k, f), j = F(k == 2 ? 0 : (k + 1), f);
            auto value =
                compat_orientation_extrinsic_index_4(Q.col(i), N.col(i), Q.col(j), N.col(j));
            index += value.second - value.first;
            abs_index += std::abs(value.second - value.first);
        }
        int index_mod = modulo(index, 4);
        if (index_mod == 1 || index_mod == 3) {
            if (index >= 4 || index < 0) {
                Q.col(F(0, f)) = -Q.col(F(0, f));
            }
            singularities[f] = index_mod;
        }
    }
}

void Parametrizer::ComputePositionSingularities() {
    const MatrixXd &V = hierarchy.mV[0], &N = hierarchy.mN[0], &Q = hierarchy.mQ[0],
                   &O = hierarchy.mO[0];
    const MatrixXi& F = hierarchy.mF;

    pos_sing.clear();
    pos_rank.resize(F.rows(), F.cols());
    pos_index.resize(6, F.cols());
    for (int f = 0; f < F.cols(); ++f) {
        Vector2i index = Vector2i::Zero();
        uint32_t i0 = F(0, f), i1 = F(1, f), i2 = F(2, f);

        Vector3d q[3] = {Q.col(i0).normalized(), Q.col(i1).normalized(), Q.col(i2).normalized()};
        Vector3d n[3] = {N.col(i0), N.col(i1), N.col(i2)};
        Vector3d o[3] = {O.col(i0), O.col(i1), O.col(i2)};
        Vector3d v[3] = {V.col(i0), V.col(i1), V.col(i2)};

        int best[3];
        double best_dp = -std::numeric_limits<double>::infinity();
        for (int i = 0; i < 4; ++i) {
            Vector3d v0 = rotate90_by(q[0], n[0], i);
            for (int j = 0; j < 4; ++j) {
                Vector3d v1 = rotate90_by(q[1], n[1], j);
                for (int k = 0; k < 4; ++k) {
                    Vector3d v2 = rotate90_by(q[2], n[2], k);
                    double dp = std::min(std::min(v0.dot(v1), v1.dot(v2)), v2.dot(v0));
                    if (dp > best_dp) {
                        best_dp = dp;
                        best[0] = i;
                        best[1] = j;
                        best[2] = k;
                    }
                }
            }
        }
        pos_rank(0, f) = best[0];
        pos_rank(1, f) = best[1];
        pos_rank(2, f) = best[2];
        for (int k = 0; k < 3; ++k) q[k] = rotate90_by(q[k], n[k], best[k]);

        for (int k = 0; k < 3; ++k) {
            int kn = k == 2 ? 0 : (k + 1);
            double scale_x = hierarchy.mScale, scale_y = hierarchy.mScale,
                   scale_x_1 = hierarchy.mScale, scale_y_1 = hierarchy.mScale;
            if (flag_adaptive_scale) {
                scale_x *= hierarchy.mS[0](0, F(k, f));
                scale_y *= hierarchy.mS[0](1, F(k, f));
                scale_x_1 *= hierarchy.mS[0](0, F(kn, f));
                scale_y_1 *= hierarchy.mS[0](1, F(kn, f));
                if (best[k] % 2 != 0) std::swap(scale_x, scale_y);
                if (best[kn] % 2 != 0) std::swap(scale_x_1, scale_y_1);
            }
            double inv_scale_x = 1.0 / scale_x, inv_scale_y = 1.0 / scale_y,
                   inv_scale_x_1 = 1.0 / scale_x_1, inv_scale_y_1 = 1.0 / scale_y_1;
            std::pair<Vector2i, Vector2i> value = compat_position_extrinsic_index_4(
                v[k], n[k], q[k], o[k], v[kn], n[kn], q[kn], o[kn], scale_x, scale_y, inv_scale_x,
                inv_scale_y, scale_x_1, scale_y_1, inv_scale_x_1, inv_scale_y_1, nullptr);
            auto diff = value.first - value.second;
            index += diff;
            pos_index(k * 2, f) = diff[0];
            pos_index(k * 2 + 1, f) = diff[1];
        }

        if (index != Vector2i::Zero()) {
            pos_sing[f] = rshift90(index, best[0]);
        }
    }
}

void Parametrizer::AnalyzeValence() {
    auto& F = hierarchy.mF;
    std::map<int, int> sing;
    for (auto& f : singularities) {
        for (int i = 0; i < 3; ++i) {
            sing[F(i, f.first)] = f.second;
        }
    }
    auto& F2E = face_edgeIds;
    auto& E2E = hierarchy.mE2E;
    auto& FQ = face_edgeOrients;
    std::set<int> sing1, sing2;
    for (int i = 0; i < F2E.size(); ++i) {
        for (int j = 0; j < 3; ++j) {
            int deid = i * 3 + j;
            int sum_int = 0;
            std::vector<int> edges;
            std::vector<double> angles;
            do {
                int deid1 = deid / 3 * 3 + (deid + 2) % 3;
                deid = E2E[deid1];
                sum_int += (FQ[deid / 3][deid % 3] + 6 - FQ[deid1 / 3][deid1 % 3]) % 4;
            } while (deid != i * 3 + j);
            if (sum_int % 4 == 2) {
                printf("OMG! valence = 2\n");
                exit(0);
            }
            if (sum_int % 4 == 1) sing1.insert(F(j, i));
            if (sum_int % 4 == 3) sing2.insert(F(j, i));
        }
    }
    int count3 = 0, count4 = 0;
    for (auto& s : singularities) {
        if (s.second == 1)
            count3 += 1;
        else
            count4 += 1;
    }
    printf("singularity: <%d %d> <%d %d>\n", (int)sing1.size(), (int)sing2.size(), count3, count4);
}


} // namespace qflow