Welcome to mirror list, hosted at ThFree Co, Russian Federation.

RecastContour.cpp « Source « Recast « recastnavigation « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 96f763a18f34d12444830df064f3bc0ae88564bb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
//
// Copyright (c) 2009 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty.  In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
//    claim that you wrote the original software. If you use this software
//    in a product, an acknowledgment in the product documentation would be
//    appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
//    misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//

#define _USE_MATH_DEFINES
#include <math.h>
#include <string.h>
#include <stdio.h>
#include "Recast.h"
#include "RecastLog.h"
#include "RecastTimer.h"


static int getCornerHeight(int x, int y, int i, int dir,
						   const rcCompactHeightfield& chf,
						   bool& isBorderVertex)
{
	const rcCompactSpan& s = chf.spans[i];
	int ch = (int)s.y;
	int dirp = (dir+1) & 0x3;
	
	unsigned short regs[4] = {0,0,0,0};
	
	regs[0] = s.reg;
	
	if (rcGetCon(s, dir) != 0xf)
	{
		const int ax = x + rcGetDirOffsetX(dir);
		const int ay = y + rcGetDirOffsetY(dir);
		const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dir);
		const rcCompactSpan& as = chf.spans[ai];
		ch = rcMax(ch, (int)as.y);
		regs[1] = as.reg;
		if (rcGetCon(as, dirp) != 0xf)
		{
			const int ax2 = ax + rcGetDirOffsetX(dirp);
			const int ay2 = ay + rcGetDirOffsetY(dirp);
			const int ai2 = (int)chf.cells[ax2+ay2*chf.width].index + rcGetCon(as, dirp);
			const rcCompactSpan& as2 = chf.spans[ai2];
			ch = rcMax(ch, (int)as2.y);
			regs[2] = as2.reg;
		}
	}
	if (rcGetCon(s, dirp) != 0xf)
	{
		const int ax = x + rcGetDirOffsetX(dirp);
		const int ay = y + rcGetDirOffsetY(dirp);
		const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dirp);
		const rcCompactSpan& as = chf.spans[ai];
		ch = rcMax(ch, (int)as.y);
		regs[3] = as.reg;
		if (rcGetCon(as, dir) != 0xf)
		{
			const int ax2 = ax + rcGetDirOffsetX(dir);
			const int ay2 = ay + rcGetDirOffsetY(dir);
			const int ai2 = (int)chf.cells[ax2+ay2*chf.width].index + rcGetCon(as, dir);
			const rcCompactSpan& as2 = chf.spans[ai2];
			ch = rcMax(ch, (int)as2.y);
			regs[2] = as2.reg;
		}
	}

	// Check if the vertex is special edge vertex, these vertices will be removed later.
	for (int j = 0; j < 4; ++j)
	{
		const int a = j;
		const int b = (j+1) & 0x3;
		const int c = (j+2) & 0x3;
		const int d = (j+3) & 0x3;
		
		// The vertex is a border vertex there are two same exterior cells in a row,
		// followed by two interior cells and none of the regions are out of bounds.
		const bool twoSameExts = (regs[a] & regs[b] & RC_BORDER_REG) != 0 && regs[a] == regs[b];
		const bool twoInts = ((regs[c] | regs[d]) & RC_BORDER_REG) == 0;
		const bool noZeros = regs[a] != 0 && regs[b] != 0 && regs[c] != 0 && regs[d] != 0;
		if (twoSameExts && twoInts && noZeros)
		{
			isBorderVertex = true;
			break;
		}
	}
	
	return ch;
}

static void walkContour(int x, int y, int i,
						rcCompactHeightfield& chf,
						unsigned char* flags, rcIntArray& points)
{
	// Choose the first non-connected edge
	unsigned char dir = 0;
	while ((flags[i] & (1 << dir)) == 0)
		dir++;
	
	unsigned char startDir = dir;
	int starti = i;
	
	int iter = 0;
	while (++iter < 40000)
	{
		if (flags[i] & (1 << dir))
		{
			// Choose the edge corner
			bool isBorderVertex = false;
			int px = x;
			int py = getCornerHeight(x, y, i, dir, chf, isBorderVertex);
			int pz = y;
			switch(dir)
			{
				case 0: pz++; break;
				case 1: px++; pz++; break;
				case 2: px++; break;
			}
			int r = 0;
			const rcCompactSpan& s = chf.spans[i];
			if (rcGetCon(s, dir) != 0xf)
			{
				const int ax = x + rcGetDirOffsetX(dir);
				const int ay = y + rcGetDirOffsetY(dir);
				const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dir);
				const rcCompactSpan& as = chf.spans[ai];
				r = (int)as.reg;
			}
			if (isBorderVertex)
				r |= RC_BORDER_VERTEX;
			points.push(px);
			points.push(py);
			points.push(pz);
			points.push(r);
			
			flags[i] &= ~(1 << dir); // Remove visited edges
			dir = (dir+1) & 0x3;  // Rotate CW
		}
		else
		{
			int ni = -1;
			const int nx = x + rcGetDirOffsetX(dir);
			const int ny = y + rcGetDirOffsetY(dir);
			const rcCompactSpan& s = chf.spans[i];
			if (rcGetCon(s, dir) != 0xf)
			{
				const rcCompactCell& nc = chf.cells[nx+ny*chf.width];
				ni = (int)nc.index + rcGetCon(s, dir);
			}
			if (ni == -1)
			{
				// Should not happen.
				return;
			}
			x = nx;
			y = ny;
			i = ni;
			dir = (dir+3) & 0x3;	// Rotate CCW
		}
		
		if (starti == i && startDir == dir)
		{
			break;
		}
	}
}

static float distancePtSeg(int x, int y, int z,
						   int px, int py, int pz,
						   int qx, int qy, int qz)
{
/*	float pqx = (float)(qx - px);
	float pqy = (float)(qy - py);
	float pqz = (float)(qz - pz);
	float dx = (float)(x - px);
	float dy = (float)(y - py);
	float dz = (float)(z - pz);
	float d = pqx*pqx + pqy*pqy + pqz*pqz;
	float t = pqx*dx + pqy*dy + pqz*dz;
	if (d > 0)
		t /= d;
	if (t < 0)
		t = 0;
	else if (t > 1)
		t = 1;
	
	dx = px + t*pqx - x;
	dy = py + t*pqy - y;
	dz = pz + t*pqz - z;
	
	return dx*dx + dy*dy + dz*dz;*/

	float pqx = (float)(qx - px);
	float pqz = (float)(qz - pz);
	float dx = (float)(x - px);
	float dz = (float)(z - pz);
	float d = pqx*pqx + pqz*pqz;
	float t = pqx*dx + pqz*dz;
	if (d > 0)
		t /= d;
	if (t < 0)
		t = 0;
	else if (t > 1)
		t = 1;
	
	dx = px + t*pqx - x;
	dz = pz + t*pqz - z;
	
	return dx*dx + dz*dz;
}

static void simplifyContour(rcIntArray& points, rcIntArray& simplified, float maxError, int maxEdgeLen)
{
	// Add initial points.
	bool noConnections = true;
	for (int i = 0; i < points.size(); i += 4)
	{
		if ((points[i+3] & 0xffff) != 0)
		{
			noConnections = false;
			break;
		}
	}
	
	if (noConnections)
	{
		// If there is no connections at all,
		// create some initial points for the simplification process. 
		// Find lower-left and upper-right vertices of the contour.
		int llx = points[0];
		int lly = points[1];
		int llz = points[2];
		int lli = 0;
		int urx = points[0];
		int ury = points[1];
		int urz = points[2];
		int uri = 0;
		for (int i = 0; i < points.size(); i += 4)
		{
			int x = points[i+0];
			int y = points[i+1];
			int z = points[i+2];
			if (x < llx || (x == llx && z < llz))
			{
				llx = x;
				lly = y;
				llz = z;
				lli = i/4;
			}
			if (x >= urx || (x == urx && z > urz))
			{
				urx = x;
				ury = y;
				urz = z;
				uri = i/4;
			}
		}
		simplified.push(llx);
		simplified.push(lly);
		simplified.push(llz);
		simplified.push(lli);
		
		simplified.push(urx);
		simplified.push(ury);
		simplified.push(urz);
		simplified.push(uri);
	}
	else
	{
		// The contour has some portals to other regions.
		// Add a new point to every location where the region changes.
		for (int i = 0, ni = points.size()/4; i < ni; ++i)
		{
			int ii = (i+1) % ni;
			if ((points[i*4+3] & 0xffff) != (points[ii*4+3] & 0xffff))
			{
				simplified.push(points[i*4+0]);
				simplified.push(points[i*4+1]);
				simplified.push(points[i*4+2]);
				simplified.push(i);
			}
		}	
	}
	
	// Add points until all raw points are within
	// error tolerance to the simplified shape.
	const int pn = points.size()/4;
	for (int i = 0; i < simplified.size()/4; )
	{
		int ii = (i+1) % (simplified.size()/4);
		
		int ax = simplified[i*4+0];
		int ay = simplified[i*4+1];
		int az = simplified[i*4+2];
		int ai = simplified[i*4+3];
		
		int bx = simplified[ii*4+0];
		int by = simplified[ii*4+1];
		int bz = simplified[ii*4+2];
		int bi = simplified[ii*4+3];
		
		// Find maximum deviation from the segment.
		float maxd = 0;
		int maxi = -1;
		int ci = (ai+1) % pn;
		
		// Tesselate only outer edges.
		if ((points[ci*4+3] & 0xffff) == 0)
		{
			while (ci != bi)
			{
				float d = distancePtSeg(points[ci*4+0], points[ci*4+1]/4, points[ci*4+2],
										ax, ay/4, az, bx, by/4, bz);
				if (d > maxd)
				{
					maxd = d;
					maxi = ci;
				}
				ci = (ci+1) % pn;
			}
		}
		
		
		// If the max deviation is larger than accepted error,
		// add new point, else continue to next segment.
		if (maxi != -1 && maxd > (maxError*maxError))
		{
			// Add space for the new point.
			simplified.resize(simplified.size()+4);
			int n = simplified.size()/4;
			for (int j = n-1; j > i; --j)
			{
				simplified[j*4+0] = simplified[(j-1)*4+0];
				simplified[j*4+1] = simplified[(j-1)*4+1];
				simplified[j*4+2] = simplified[(j-1)*4+2];
				simplified[j*4+3] = simplified[(j-1)*4+3];
			}
			// Add the point.
			simplified[(i+1)*4+0] = points[maxi*4+0];
			simplified[(i+1)*4+1] = points[maxi*4+1];
			simplified[(i+1)*4+2] = points[maxi*4+2];
			simplified[(i+1)*4+3] = maxi;
		}
		else
		{
			++i;
		}
	}
	
	// Split too long edges.
	if (maxEdgeLen > 0)
	{
		for (int i = 0; i < simplified.size()/4; )
		{
			int ii = (i+1) % (simplified.size()/4);
			
			int ax = simplified[i*4+0];
			int az = simplified[i*4+2];
			int ai = simplified[i*4+3];
			
			int bx = simplified[ii*4+0];
			int bz = simplified[ii*4+2];
			int bi = simplified[ii*4+3];
			
			// Find maximum deviation from the segment.
			int maxi = -1;
			int ci = (ai+1) % pn;
			
			// Tesselate only outer edges.
			if ((points[ci*4+3] & 0xffff) == 0)
			{
				int dx = bx - ax;
				int dz = bz - az;
				if (dx*dx + dz*dz > maxEdgeLen*maxEdgeLen)
				{
					int n = bi < ai ? (bi+pn - ai) : (bi - ai);
					maxi = (ai + n/2) % pn;
				}
			}
			
			// If the max deviation is larger than accepted error,
			// add new point, else continue to next segment.
			if (maxi != -1)
			{
				// Add space for the new point.
				simplified.resize(simplified.size()+4);
				int n = simplified.size()/4;
				for (int j = n-1; j > i; --j)
				{
					simplified[j*4+0] = simplified[(j-1)*4+0];
					simplified[j*4+1] = simplified[(j-1)*4+1];
					simplified[j*4+2] = simplified[(j-1)*4+2];
					simplified[j*4+3] = simplified[(j-1)*4+3];
				}
				// Add the point.
				simplified[(i+1)*4+0] = points[maxi*4+0];
				simplified[(i+1)*4+1] = points[maxi*4+1];
				simplified[(i+1)*4+2] = points[maxi*4+2];
				simplified[(i+1)*4+3] = maxi;
			}
			else
			{
				++i;
			}
		}
	}
	
	for (int i = 0; i < simplified.size()/4; ++i)
	{
		// The edge vertex flag is take from the current raw point,
		// and the neighbour region is take from the next raw point.
		const int ai = (simplified[i*4+3]+1) % pn;
		const int bi = simplified[i*4+3];
		simplified[i*4+3] = (points[ai*4+3] & 0xffff) | (points[bi*4+3] & RC_BORDER_VERTEX);
	}
	
}

static void removeDegenerateSegments(rcIntArray& simplified)
{
	// Remove adjacent vertices which are equal on xz-plane,
	// or else the triangulator will get confused.
	for (int i = 0; i < simplified.size()/4; ++i)
	{
		int ni = i+1;
		if (ni >= (simplified.size()/4))
			ni = 0;
			
		if (simplified[i*4+0] == simplified[ni*4+0] &&
			simplified[i*4+2] == simplified[ni*4+2])
		{
			// Degenerate segment, remove.
			for (int j = i; j < simplified.size()/4-1; ++j)
			{
				simplified[j*4+0] = simplified[(j+1)*4+0];
				simplified[j*4+1] = simplified[(j+1)*4+1];
				simplified[j*4+2] = simplified[(j+1)*4+2];
				simplified[j*4+3] = simplified[(j+1)*4+3];
			}
			simplified.pop();
		}
	}
}

static int calcAreaOfPolygon2D(const int* verts, const int nverts)
{
	int area = 0;
	for (int i = 0, j = nverts-1; i < nverts; j=i++)
	{
		const int* vi = &verts[i*4];
		const int* vj = &verts[j*4];
		area += vi[0] * vj[2] - vj[0] * vi[2];
	}
	return (area+1) / 2;
}

static void getClosestIndices(const int* vertsa, const int nvertsa,
							  const int* vertsb, const int nvertsb,
							  int& ia, int& ib)
{
	int closestDist = 0xfffffff;
	for (int i = 0; i < nvertsa; ++i)
	{
		const int* va = &vertsa[i*4];
		for (int j = 0; j < nvertsb; ++j)
		{
			const int* vb = &vertsb[j*4];
			const int dx = vb[0] - va[0];
			const int dz = vb[2] - va[2];
			const int d = dx*dx + dz*dz;
			if (d < closestDist)
			{
				ia = i;
				ib = j;
				closestDist = d;
			}
		}
	}
}

static bool mergeContours(rcContour& ca, rcContour& cb, int ia, int ib)
{
	const int maxVerts = ca.nverts + cb.nverts + 2;
	int* verts = new int[maxVerts*4];
	if (!verts)
		return false;

	int nv = 0;

	// Copy contour A.
	for (int i = 0; i <= ca.nverts; ++i)
	{
		int* dst = &verts[nv*4];
		const int* src = &ca.verts[((ia+i)%ca.nverts)*4];
		dst[0] = src[0];
		dst[1] = src[1];
		dst[2] = src[2];
		dst[3] = src[3];
		nv++;
	}

	// Copy contour B
	for (int i = 0; i <= cb.nverts; ++i)
	{
		int* dst = &verts[nv*4];
		const int* src = &cb.verts[((ib+i)%cb.nverts)*4];
		dst[0] = src[0];
		dst[1] = src[1];
		dst[2] = src[2];
		dst[3] = src[3];
		nv++;
	}
	
	delete [] ca.verts;
	ca.verts = verts;
	ca.nverts = nv;

	delete [] cb.verts;
	cb.verts = 0;
	cb.nverts = 0;
	
	return true;
}

bool rcBuildContours(rcCompactHeightfield& chf,
					 const float maxError, const int maxEdgeLen,
					 rcContourSet& cset)
{
	const int w = chf.width;
	const int h = chf.height;
	
	rcTimeVal startTime = rcGetPerformanceTimer();
	
	vcopy(cset.bmin, chf.bmin);
	vcopy(cset.bmax, chf.bmax);
	cset.cs = chf.cs;
	cset.ch = chf.ch;
	
	const int maxContours = chf.maxRegions*2;
	cset.conts = new rcContour[maxContours];
	if (!cset.conts)
		return false;
	cset.nconts = 0;
	
	unsigned char* flags = new unsigned char[chf.spanCount];
	if (!flags)
	{
		if (rcGetLog())
			rcGetLog()->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'flags'.");
		return false;
	}
	
	rcTimeVal traceStartTime = rcGetPerformanceTimer();
					
	
	// Mark boundaries.
	for (int y = 0; y < h; ++y)
	{
		for (int x = 0; x < w; ++x)
		{
			const rcCompactCell& c = chf.cells[x+y*w];
			for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
			{
				unsigned char res = 0;
				const rcCompactSpan& s = chf.spans[i];
				if (!s.reg || (s.reg & RC_BORDER_REG))
				{
					flags[i] = 0;
					continue;
				}
				for (int dir = 0; dir < 4; ++dir)
				{
					unsigned short r = 0;
					if (rcGetCon(s, dir) != 0xf)
					{
						const int ax = x + rcGetDirOffsetX(dir);
						const int ay = y + rcGetDirOffsetY(dir);
						const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir);
						const rcCompactSpan& as = chf.spans[ai];
						r = as.reg;
					}
					if (r == s.reg)
						res |= (1 << dir);
				}
				flags[i] = res ^ 0xf; // Inverse, mark non connected edges.
			}
		}
	}
	
	rcTimeVal traceEndTime = rcGetPerformanceTimer();
	
	rcTimeVal simplifyStartTime = rcGetPerformanceTimer();
	
	rcIntArray verts(256);
	rcIntArray simplified(64);
	
	for (int y = 0; y < h; ++y)
	{
		for (int x = 0; x < w; ++x)
		{
			const rcCompactCell& c = chf.cells[x+y*w];
			for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
			{
				if (flags[i] == 0 || flags[i] == 0xf)
				{
					flags[i] = 0;
					continue;
				}
				unsigned short reg = chf.spans[i].reg;
				if (!reg || (reg & RC_BORDER_REG))
					continue;
				
				verts.resize(0);
				simplified.resize(0);
				walkContour(x, y, i, chf, flags, verts);
				simplifyContour(verts, simplified, maxError, maxEdgeLen);
				removeDegenerateSegments(simplified);
				
				// Store region->contour remap info.
				// Create contour.
				if (simplified.size()/4 >= 3)
				{
					if (cset.nconts >= maxContours)
					{
						if (rcGetLog())
							rcGetLog()->log(RC_LOG_ERROR, "rcBuildContours: Too many contours %d, max %d.", cset.nconts, maxContours);
						return false;
					}
						
					rcContour* cont = &cset.conts[cset.nconts++];
					
					cont->nverts = simplified.size()/4;
					cont->verts = new int[cont->nverts*4];
					memcpy(cont->verts, &simplified[0], sizeof(int)*cont->nverts*4);
					
					cont->nrverts = verts.size()/4;
					cont->rverts = new int[cont->nrverts*4];
					memcpy(cont->rverts, &verts[0], sizeof(int)*cont->nrverts*4);
					
/*					cont->cx = cont->cy = cont->cz = 0;
					for (int i = 0; i < cont->nverts; ++i)
					{
						cont->cx += cont->verts[i*4+0];
						cont->cy += cont->verts[i*4+1];
						cont->cz += cont->verts[i*4+2];
					}
					cont->cx /= cont->nverts;
					cont->cy /= cont->nverts;
					cont->cz /= cont->nverts;*/
					
					cont->reg = reg;
				}
			}
		}
	}
	
	// Check and merge droppings.
	// Sometimes the previous algorithms can fail and create several countours
	// per area. This pass will try to merge the holes into the main region.
	for (int i = 0; i < cset.nconts; ++i)
	{
		rcContour& cont = cset.conts[i];
		// Check if the contour is would backwards.
		if (calcAreaOfPolygon2D(cont.verts, cont.nverts) < 0)
		{
			// Find another contour which has the same region ID.
			int mergeIdx = -1;
			for (int j = 0; j < cset.nconts; ++j)
			{
				if (i == j) continue;
				if (cset.conts[j].nverts && cset.conts[j].reg == cont.reg)
				{
					// Make sure the polygon is correctly oriented.
					if (calcAreaOfPolygon2D(cset.conts[j].verts, cset.conts[j].nverts))
					{
						mergeIdx = j;
						break;
					}
				}
			}
			if (mergeIdx == -1)
			{
				if (rcGetLog())
					rcGetLog()->log(RC_LOG_WARNING, "rcBuildContours: Could not find merge target for bad contour %d.", i);
			}
			else
			{
				rcContour& mcont = cset.conts[mergeIdx];
				// Merge by closest points.
				int ia, ib;
				getClosestIndices(mcont.verts, mcont.nverts, cont.verts, cont.nverts, ia, ib);
				if (!mergeContours(mcont, cont, ia, ib))
				{
					if (rcGetLog())
						rcGetLog()->log(RC_LOG_WARNING, "rcBuildContours: Failed to merge contours %d and %d.", i, mergeIdx);
				}
			}
		}
	}
	
		
	delete [] flags;
	
	rcTimeVal simplifyEndTime = rcGetPerformanceTimer();
	
	rcTimeVal endTime = rcGetPerformanceTimer();
	
//	if (rcGetLog())
//	{
//		rcGetLog()->log(RC_LOG_PROGRESS, "Create contours: %.3f ms", rcGetDeltaTimeUsec(startTime, endTime)/1000.0f);
//		rcGetLog()->log(RC_LOG_PROGRESS, " - boundary: %.3f ms", rcGetDeltaTimeUsec(boundaryStartTime, boundaryEndTime)/1000.0f);
//		rcGetLog()->log(RC_LOG_PROGRESS, " - contour: %.3f ms", rcGetDeltaTimeUsec(contourStartTime, contourEndTime)/1000.0f);
//	}

	if (rcGetBuildTimes())
	{
		rcGetBuildTimes()->buildContours += rcGetDeltaTimeUsec(startTime, endTime);
		rcGetBuildTimes()->buildContoursTrace += rcGetDeltaTimeUsec(traceStartTime, traceEndTime);
		rcGetBuildTimes()->buildContoursSimplify += rcGetDeltaTimeUsec(simplifyStartTime, simplifyEndTime);
	}
	
	return true;
}