Welcome to mirror list, hosted at ThFree Co, Russian Federation.

RecastLayers.cpp « Source « Recast « recastnavigation « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 22a357effa1884546b23546300ac79eb6716a1ba (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
//
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty.  In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
//    claim that you wrote the original software. If you use this software
//    in a product, an acknowledgment in the product documentation would be
//    appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
//    misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//

#include <float.h>
#define _USE_MATH_DEFINES
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include "Recast.h"
#include "RecastAlloc.h"
#include "RecastAssert.h"


static const int RC_MAX_LAYERS = RC_NOT_CONNECTED;
static const int RC_MAX_NEIS = 16;

struct rcLayerRegion
{
	unsigned char layers[RC_MAX_LAYERS];
	unsigned char neis[RC_MAX_NEIS];
	unsigned short ymin, ymax;
	unsigned char layerId;		// Layer ID
	unsigned char nlayers;		// Layer count
	unsigned char nneis;		// Neighbour count
	unsigned char base;		// Flag indicating if the region is the base of merged regions.
};


static void addUnique(unsigned char* a, unsigned char& an, unsigned char v)
{
	const int n = (int)an;
	for (int i = 0; i < n; ++i)
		if (a[i] == v)
			return;
	a[an] = v;
	an++;
}

static bool contains(const unsigned char* a, const unsigned char an, const unsigned char v)
{
	const int n = (int)an;
	for (int i = 0; i < n; ++i)
		if (a[i] == v)
			return true;
	return false;
}

inline bool overlapRange(const unsigned short amin, const unsigned short amax,
						 const unsigned short bmin, const unsigned short bmax)
{
	return (amin > bmax || amax < bmin) ? false : true;
}



struct rcLayerSweepSpan
{
	unsigned short ns;	// number samples
	unsigned char id;	// region id
	unsigned char nei;	// neighbour id
};

/// @par
/// 
/// See the #rcConfig documentation for more information on the configuration parameters.
/// 
/// @see rcAllocHeightfieldLayerSet, rcCompactHeightfield, rcHeightfieldLayerSet, rcConfig
bool rcBuildHeightfieldLayers(rcContext* ctx, rcCompactHeightfield& chf,
							  const int borderSize, const int walkableHeight,
							  rcHeightfieldLayerSet& lset)
{
	rcAssert(ctx);
	
	rcScopedTimer timer(ctx, RC_TIMER_BUILD_LAYERS);
	
	const int w = chf.width;
	const int h = chf.height;
	
	rcScopedDelete<unsigned char> srcReg((unsigned char*)rcAlloc(sizeof(unsigned char)*chf.spanCount, RC_ALLOC_TEMP));
	if (!srcReg)
	{
		ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'srcReg' (%d).", chf.spanCount);
		return false;
	}
	memset(srcReg,0xff,sizeof(unsigned char)*chf.spanCount);
	
	const int nsweeps = chf.width;
	rcScopedDelete<rcLayerSweepSpan> sweeps((rcLayerSweepSpan*)rcAlloc(sizeof(rcLayerSweepSpan)*nsweeps, RC_ALLOC_TEMP));
	if (!sweeps)
	{
		ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'sweeps' (%d).", nsweeps);
		return false;
	}
	
	
	// Partition walkable area into monotone regions.
	int prevCount[256];
	unsigned char regId = 0;

	for (int y = borderSize; y < h-borderSize; ++y)
	{
		memset(prevCount,0,sizeof(int)*regId);
		unsigned char sweepId = 0;
		
		for (int x = borderSize; x < w-borderSize; ++x)
		{
			const rcCompactCell& c = chf.cells[x+y*w];
			
			for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
			{
				const rcCompactSpan& s = chf.spans[i];
				if (chf.areas[i] == RC_NULL_AREA) continue;

				unsigned char sid = 0xff;

				// -x
				if (rcGetCon(s, 0) != RC_NOT_CONNECTED)
				{
					const int ax = x + rcGetDirOffsetX(0);
					const int ay = y + rcGetDirOffsetY(0);
					const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 0);
					if (chf.areas[ai] != RC_NULL_AREA && srcReg[ai] != 0xff)
						sid = srcReg[ai];
				}
				
				if (sid == 0xff)
				{
					sid = sweepId++;
					sweeps[sid].nei = 0xff;
					sweeps[sid].ns = 0;
				}
				
				// -y
				if (rcGetCon(s,3) != RC_NOT_CONNECTED)
				{
					const int ax = x + rcGetDirOffsetX(3);
					const int ay = y + rcGetDirOffsetY(3);
					const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 3);
					const unsigned char nr = srcReg[ai];
					if (nr != 0xff)
					{
						// Set neighbour when first valid neighbour is encoutered.
						if (sweeps[sid].ns == 0)
							sweeps[sid].nei = nr;
						
						if (sweeps[sid].nei == nr)
						{
							// Update existing neighbour
							sweeps[sid].ns++;
							prevCount[nr]++;
						}
						else
						{
							// This is hit if there is nore than one neighbour.
							// Invalidate the neighbour.
							sweeps[sid].nei = 0xff;
						}
					}
				}
				
				srcReg[i] = sid;
			}
		}
		
		// Create unique ID.
		for (int i = 0; i < sweepId; ++i)
		{
			// If the neighbour is set and there is only one continuous connection to it,
			// the sweep will be merged with the previous one, else new region is created.
			if (sweeps[i].nei != 0xff && prevCount[sweeps[i].nei] == (int)sweeps[i].ns)
			{
				sweeps[i].id = sweeps[i].nei;
			}
			else
			{
				if (regId == 255)
				{
					ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Region ID overflow.");
					return false;
				}
				sweeps[i].id = regId++;
			}
		}
		
		// Remap local sweep ids to region ids.
		for (int x = borderSize; x < w-borderSize; ++x)
		{
			const rcCompactCell& c = chf.cells[x+y*w];
			for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
			{
				if (srcReg[i] != 0xff)
					srcReg[i] = sweeps[srcReg[i]].id;
			}
		}
	}

	// Allocate and init layer regions.
	const int nregs = (int)regId;
	rcScopedDelete<rcLayerRegion> regs((rcLayerRegion*)rcAlloc(sizeof(rcLayerRegion)*nregs, RC_ALLOC_TEMP));
	if (!regs)
	{
		ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'regs' (%d).", nregs);
		return false;
	}
	memset(regs, 0, sizeof(rcLayerRegion)*nregs);
	for (int i = 0; i < nregs; ++i)
	{
		regs[i].layerId = 0xff;
		regs[i].ymin = 0xffff;
		regs[i].ymax = 0;
	}
	
	// Find region neighbours and overlapping regions.
	for (int y = 0; y < h; ++y)
	{
		for (int x = 0; x < w; ++x)
		{
			const rcCompactCell& c = chf.cells[x+y*w];
			
			unsigned char lregs[RC_MAX_LAYERS];
			int nlregs = 0;
			
			for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
			{
				const rcCompactSpan& s = chf.spans[i];
				const unsigned char ri = srcReg[i];
				if (ri == 0xff) continue;
				
				regs[ri].ymin = rcMin(regs[ri].ymin, s.y);
				regs[ri].ymax = rcMax(regs[ri].ymax, s.y);
				
				// Collect all region layers.
				if (nlregs < RC_MAX_LAYERS)
					lregs[nlregs++] = ri;
				
				// Update neighbours
				for (int dir = 0; dir < 4; ++dir)
				{
					if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
					{
						const int ax = x + rcGetDirOffsetX(dir);
						const int ay = y + rcGetDirOffsetY(dir);
						const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir);
						const unsigned char rai = srcReg[ai];
						if (rai != 0xff && rai != ri && regs[ri].nneis < RC_MAX_NEIS)
							addUnique(regs[ri].neis, regs[ri].nneis, rai);
					}
				}
				
			}
			
			// Update overlapping regions.
			for (int i = 0; i < nlregs-1; ++i)
			{
				for (int j = i+1; j < nlregs; ++j)
				{
					if (lregs[i] != lregs[j])
					{
						rcLayerRegion& ri = regs[lregs[i]];
						rcLayerRegion& rj = regs[lregs[j]];
						addUnique(ri.layers, ri.nlayers, lregs[j]);
						addUnique(rj.layers, rj.nlayers, lregs[i]);
					}
				}
			}
			
		}
	}
	
	// Create 2D layers from regions.
	unsigned char layerId = 0;
	
	static const int MAX_STACK = 64;
	unsigned char stack[MAX_STACK];
	int nstack = 0;
	
	for (int i = 0; i < nregs; ++i)
	{
		rcLayerRegion& root = regs[i];
		// Skip already visited.
		if (root.layerId != 0xff)
			continue;

		// Start search.
		root.layerId = layerId;
		root.base = 1;
		
		nstack = 0;
		stack[nstack++] = (unsigned char)i;
		
		while (nstack)
		{
			// Pop front
			rcLayerRegion& reg = regs[stack[0]];
			nstack--;
			for (int j = 0; j < nstack; ++j)
				stack[j] = stack[j+1];
			
			const int nneis = (int)reg.nneis;
			for (int j = 0; j < nneis; ++j)
			{
				const unsigned char nei = reg.neis[j];
				rcLayerRegion& regn = regs[nei];
				// Skip already visited.
				if (regn.layerId != 0xff)
					continue;
				// Skip if the neighbour is overlapping root region.
				if (contains(root.layers, root.nlayers, nei))
					continue;
				// Skip if the height range would become too large.
				const int ymin = rcMin(root.ymin, regn.ymin);
				const int ymax = rcMax(root.ymax, regn.ymax);
				if ((ymax - ymin) >= 255)
					 continue;

				if (nstack < MAX_STACK)
				{
					// Deepen
					stack[nstack++] = (unsigned char)nei;
					
					// Mark layer id
					regn.layerId = layerId;
					// Merge current layers to root.
					for (int k = 0; k < regn.nlayers; ++k)
						addUnique(root.layers, root.nlayers, regn.layers[k]);
					root.ymin = rcMin(root.ymin, regn.ymin);
					root.ymax = rcMax(root.ymax, regn.ymax);
				}
			}
		}
		
		layerId++;
	}
	
	// Merge non-overlapping regions that are close in height.
	const unsigned short mergeHeight = (unsigned short)walkableHeight * 4;
	
	for (int i = 0; i < nregs; ++i)
	{
		rcLayerRegion& ri = regs[i];
		if (!ri.base) continue;
		
		unsigned char newId = ri.layerId;
		
		for (;;)
		{
			unsigned char oldId = 0xff;
			
			for (int j = 0; j < nregs; ++j)
			{
				if (i == j) continue;
				rcLayerRegion& rj = regs[j];
				if (!rj.base) continue;
				
				// Skip if the regions are not close to each other.
				if (!overlapRange(ri.ymin,ri.ymax+mergeHeight, rj.ymin,rj.ymax+mergeHeight))
					continue;
				// Skip if the height range would become too large.
				const int ymin = rcMin(ri.ymin, rj.ymin);
				const int ymax = rcMax(ri.ymax, rj.ymax);
				if ((ymax - ymin) >= 255)
				  continue;
						  
				// Make sure that there is no overlap when merging 'ri' and 'rj'.
				bool overlap = false;
				// Iterate over all regions which have the same layerId as 'rj'
				for (int k = 0; k < nregs; ++k)
				{
					if (regs[k].layerId != rj.layerId)
						continue;
					// Check if region 'k' is overlapping region 'ri'
					// Index to 'regs' is the same as region id.
					if (contains(ri.layers,ri.nlayers, (unsigned char)k))
					{
						overlap = true;
						break;
					}
				}
				// Cannot merge of regions overlap.
				if (overlap)
					continue;
				
				// Can merge i and j.
				oldId = rj.layerId;
				break;
			}
			
			// Could not find anything to merge with, stop.
			if (oldId == 0xff)
				break;
			
			// Merge
			for (int j = 0; j < nregs; ++j)
			{
				rcLayerRegion& rj = regs[j];
				if (rj.layerId == oldId)
				{
					rj.base = 0;
					// Remap layerIds.
					rj.layerId = newId;
					// Add overlaid layers from 'rj' to 'ri'.
					for (int k = 0; k < rj.nlayers; ++k)
						addUnique(ri.layers, ri.nlayers, rj.layers[k]);
					// Update height bounds.
					ri.ymin = rcMin(ri.ymin, rj.ymin);
					ri.ymax = rcMax(ri.ymax, rj.ymax);
				}
			}
		}
	}
	
	// Compact layerIds
	unsigned char remap[256];
	memset(remap, 0, 256);

	// Find number of unique layers.
	layerId = 0;
	for (int i = 0; i < nregs; ++i)
		remap[regs[i].layerId] = 1;
	for (int i = 0; i < 256; ++i)
	{
		if (remap[i])
			remap[i] = layerId++;
		else
			remap[i] = 0xff;
	}
	// Remap ids.
	for (int i = 0; i < nregs; ++i)
		regs[i].layerId = remap[regs[i].layerId];
	
	// No layers, return empty.
	if (layerId == 0)
		return true;
	
	// Create layers.
	rcAssert(lset.layers == 0);
	
	const int lw = w - borderSize*2;
	const int lh = h - borderSize*2;

	// Build contracted bbox for layers.
	float bmin[3], bmax[3];
	rcVcopy(bmin, chf.bmin);
	rcVcopy(bmax, chf.bmax);
	bmin[0] += borderSize*chf.cs;
	bmin[2] += borderSize*chf.cs;
	bmax[0] -= borderSize*chf.cs;
	bmax[2] -= borderSize*chf.cs;
	
	lset.nlayers = (int)layerId;
	
	lset.layers = (rcHeightfieldLayer*)rcAlloc(sizeof(rcHeightfieldLayer)*lset.nlayers, RC_ALLOC_PERM);
	if (!lset.layers)
	{
		ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'layers' (%d).", lset.nlayers);
		return false;
	}
	memset(lset.layers, 0, sizeof(rcHeightfieldLayer)*lset.nlayers);

	
	// Store layers.
	for (int i = 0; i < lset.nlayers; ++i)
	{
		unsigned char curId = (unsigned char)i;

		rcHeightfieldLayer* layer = &lset.layers[i];

		const int gridSize = sizeof(unsigned char)*lw*lh;

		layer->heights = (unsigned char*)rcAlloc(gridSize, RC_ALLOC_PERM);
		if (!layer->heights)
		{
			ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'heights' (%d).", gridSize);
			return false;
		}
		memset(layer->heights, 0xff, gridSize);

		layer->areas = (unsigned char*)rcAlloc(gridSize, RC_ALLOC_PERM);
		if (!layer->areas)
		{
			ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'areas' (%d).", gridSize);
			return false;
		}
		memset(layer->areas, 0, gridSize);

		layer->cons = (unsigned char*)rcAlloc(gridSize, RC_ALLOC_PERM);
		if (!layer->cons)
		{
			ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'cons' (%d).", gridSize);
			return false;
		}
		memset(layer->cons, 0, gridSize);
		
		// Find layer height bounds.
		int hmin = 0, hmax = 0;
		for (int j = 0; j < nregs; ++j)
		{
			if (regs[j].base && regs[j].layerId == curId)
			{
				hmin = (int)regs[j].ymin;
				hmax = (int)regs[j].ymax;
			}
		}

		layer->width = lw;
		layer->height = lh;
		layer->cs = chf.cs;
		layer->ch = chf.ch;
		
		// Adjust the bbox to fit the heightfield.
		rcVcopy(layer->bmin, bmin);
		rcVcopy(layer->bmax, bmax);
		layer->bmin[1] = bmin[1] + hmin*chf.ch;
		layer->bmax[1] = bmin[1] + hmax*chf.ch;
		layer->hmin = hmin;
		layer->hmax = hmax;

		// Update usable data region.
		layer->minx = layer->width;
		layer->maxx = 0;
		layer->miny = layer->height;
		layer->maxy = 0;
		
		// Copy height and area from compact heightfield. 
		for (int y = 0; y < lh; ++y)
		{
			for (int x = 0; x < lw; ++x)
			{
				const int cx = borderSize+x;
				const int cy = borderSize+y;
				const rcCompactCell& c = chf.cells[cx+cy*w];
				for (int j = (int)c.index, nj = (int)(c.index+c.count); j < nj; ++j)
				{
					const rcCompactSpan& s = chf.spans[j];
					// Skip unassigned regions.
					if (srcReg[j] == 0xff)
						continue;
					// Skip of does nto belong to current layer.
					unsigned char lid = regs[srcReg[j]].layerId;
					if (lid != curId)
						continue;
					
					// Update data bounds.
					layer->minx = rcMin(layer->minx, x);
					layer->maxx = rcMax(layer->maxx, x);
					layer->miny = rcMin(layer->miny, y);
					layer->maxy = rcMax(layer->maxy, y);
					
					// Store height and area type.
					const int idx = x+y*lw;
					layer->heights[idx] = (unsigned char)(s.y - hmin);
					layer->areas[idx] = chf.areas[j];
					
					// Check connection.
					unsigned char portal = 0;
					unsigned char con = 0;
					for (int dir = 0; dir < 4; ++dir)
					{
						if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
						{
							const int ax = cx + rcGetDirOffsetX(dir);
							const int ay = cy + rcGetDirOffsetY(dir);
							const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir);
							unsigned char alid = srcReg[ai] != 0xff ? regs[srcReg[ai]].layerId : 0xff;
							// Portal mask
							if (chf.areas[ai] != RC_NULL_AREA && lid != alid)
							{
								portal |= (unsigned char)(1<<dir);
								// Update height so that it matches on both sides of the portal.
								const rcCompactSpan& as = chf.spans[ai];
								if (as.y > hmin)
									layer->heights[idx] = rcMax(layer->heights[idx], (unsigned char)(as.y - hmin));
							}
							// Valid connection mask
							if (chf.areas[ai] != RC_NULL_AREA && lid == alid)
							{
								const int nx = ax - borderSize;
								const int ny = ay - borderSize;
								if (nx >= 0 && ny >= 0 && nx < lw && ny < lh)
									con |= (unsigned char)(1<<dir);
							}
						}
					}
					
					layer->cons[idx] = (portal << 4) | con;
				}
			}
		}
		
		if (layer->minx > layer->maxx)
			layer->minx = layer->maxx = 0;
		if (layer->miny > layer->maxy)
			layer->miny = layer->maxy = 0;
	}
	
	return true;
}