Welcome to mirror list, hosted at ThFree Co, Russian Federation.

admmpd_embeddedmesh.cpp « src « softbody « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 17e2b28c0e80dc5b916bebbf5eda23121b803670 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
// Copyright Matt Overby 2020.
// Distributed under the MIT License.

#include "admmpd_embeddedmesh.h"
#include "admmpd_math.h"
#include "admmpd_bvh.h"
#include "admmpd_bvh_traverse.h"
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <set>
#include "BLI_task.h" // threading
#include "BLI_assert.h"

namespace admmpd {
using namespace Eigen;

typedef struct KeepTetThreadData {
	const AABBTree<double,3> *tree; // of embedded faces
	const MatrixXd *pts; // of embedded verts
	const MatrixXi *faces; // embedded faces
	const std::vector<Vector3d> *tet_x;
	const std::vector<Vector4i> *tets;
	std::vector<int> *keep_tet; // 0 or 1
} KeepTetThreadData;

static void parallel_keep_tet(
	void *__restrict userdata,
	const int i,
	const TaskParallelTLS *__restrict UNUSED(tls))
{
	KeepTetThreadData *td = (KeepTetThreadData*)userdata;
	RowVector4i tet = td->tets->at(i);
	Vector3d tet_pts[4] = {
		td->tet_x->at(tet[0]),
		td->tet_x->at(tet[1]),
		td->tet_x->at(tet[2]),
		td->tet_x->at(tet[3])
	};

	// Returns true if the tet intersects the
	// surface mesh. Even if it doesn't, we want to keep
	// the tet if it's totally enclosed in the mesh.
	TetIntersectsMeshTraverse<double> tet_hits_mesh(
		tet_pts, td->pts, td->faces);
	bool hit = td->tree->traverse(tet_hits_mesh);
	if (!hit)
	{
		// We only need to check if one vertex of the
		// tet is inside the mesh. If a subset of
		// vertices are inside the mesh, then there would
		// be tri/tri intersection.
		PointInTriangleMeshTraverse<double> pt_in_mesh(
			tet_pts[0], td->pts, td->faces);
		td->tree->traverse(pt_in_mesh);
		if (pt_in_mesh.output.num_hits() % 2 == 1)
		{
			hit = true;
		}
	}

	if (hit) { td->keep_tet->at(i) = 1; }
	else { td->keep_tet->at(i) = 0; }

} // end parallel test if keep tet

// Gen lattice with subdivision
struct LatticeData {
	const Eigen::MatrixXd *V;
	std::vector<Vector3d> verts;
	std::vector<Vector4i> tets;
};

static inline void merge_close_vertices(LatticeData *data, double eps=1e-12)
{
	int nv = data->verts.size();
	std::vector<Vector3d> new_v(nv); // new verts
	std::vector<int> idx(nv,0); // index mapping
	std::vector<int> visited(nv,0);
	int count = 0;
	for (int i=0; i<nv; ++i)
	{
		if(!visited[i])
		{
			visited[i] = 1;
			new_v[count] = data->verts[i];
			idx[i] = count;
			Vector3d vi = data->verts[i];
			for (int j = i+1; j<nv; ++j)
			{
				if((data->verts[j]-vi).norm() < eps)
				{
					visited[j] = 1;
					idx[j] = count;
				}
			}
			count++;
		}
	}
	new_v.resize(count);
	data->verts = new_v;
	int nt = data->tets.size();
	for (int i=0; i<nt; ++i)
	{
		for (int j=0; j<4; ++j)
		{
			data->tets[i][j] = idx[data->tets[i][j]];
		}
	}
}

static inline void subdivide_cube(
	LatticeData *data,
	const std::vector<Vector3d> &cv,
	const std::vector<int> &pts_in_box,
	int level)
{
	BLI_assert((int)cv.size()==8);
	auto add_tets_from_box = [&]()
	{
		Vector3d max = cv[5];
		Vector3d min = cv[3];
		std::vector<Vector3d> v = {
			// Top plane, clockwise looking down
			max,
			Vector3d(min[0], max[1], max[2]),
			Vector3d(min[0], max[1], min[2]),
			Vector3d(max[0], max[1], min[2]),
			// Bottom plane, clockwise looking down
			Vector3d(max[0], min[1], max[2]),
			Vector3d(min[0], min[1], max[2]),
			min,
			Vector3d(max[0], min[1], min[2])
		};
		// Add vertices and get indices of the box
		std::vector<int> b;
		for(int i=0; i<8; ++i)
		{
			b.emplace_back(data->verts.size());
			data->verts.emplace_back(v[i]);
		}
		// From the box, create five new tets
		std::vector<Vector4i> new_tets = {
			Vector4i( b[0], b[5], b[7], b[4] ),
			Vector4i( b[5], b[7], b[2], b[0] ),
			Vector4i( b[5], b[0], b[2], b[1] ),
			Vector4i( b[7], b[2], b[0], b[3] ),
			Vector4i( b[5], b[2], b[7], b[6] )
		};
		for(int i=0; i<5; ++i)
			data->tets.emplace_back(new_tets[i]);
	};

	// Add this cube because we're at bottom
	if (level==0)
	{
		add_tets_from_box();
		return;
	}

	// Only subdivide if we contain vertices
	// Otherwise just return.
	AlignedBox<double,3> aabb;
	aabb.extend(cv[3]); aabb.extend(cv[5]);
	aabb.extend(aabb.min()-Vector3d::Ones()*1e-8);
	aabb.extend(aabb.max()+Vector3d::Ones()*1e-8);
	std::vector<int> new_pts_in_box;
	int nv = pts_in_box.size();
	for (int i=0; i<nv; ++i)
	{
		int idx = pts_in_box[i];
		if (aabb.contains(data->V->row(idx).transpose()))
			new_pts_in_box.emplace_back(idx);
	}
	if (new_pts_in_box.size()==0)
	{
		add_tets_from_box();
		return;
	}

	// cv are the cube vertices, listed clockwise
	// with the bottom plane first, then top plane
	Vector3d vfront = 0.25*(cv[0]+cv[1]+cv[5]+cv[4]); // front (+z)
	Vector3d vback = 0.25*(cv[3]+cv[2]+cv[6]+cv[7]); // back (-z)
	Vector3d vleft = 0.25*(cv[0]+cv[3]+cv[7]+cv[4]); // left (-x)
	Vector3d vright = 0.25*(cv[1]+cv[2]+cv[6]+cv[5]); // right (+x)
	Vector3d vtop = 0.25*(cv[4]+cv[5]+cv[6]+cv[7]); // top (+y)
	Vector3d vbot = 0.25*(cv[0]+cv[1]+cv[2]+cv[3]); // bot (-y)
	Vector3d vcent = 0.125*(cv[0]+cv[1]+cv[2]+cv[3]+cv[4]+cv[5]+cv[6]+cv[7]); // center
	Vector3d v01 = 0.5*(cv[0]+cv[1]);
	Vector3d v03 = 0.5*(cv[0]+cv[3]);
	Vector3d v04 = 0.5*(cv[0]+cv[4]);
	Vector3d v12 = 0.5*(cv[1]+cv[2]);
	Vector3d v15 = 0.5*(cv[1]+cv[5]);
	Vector3d v23 = 0.5*(cv[2]+cv[3]);
	Vector3d v26 = 0.5*(cv[2]+cv[6]);
	Vector3d v37 = 0.5*(cv[3]+cv[7]);
	Vector3d v45 = 0.5*(cv[4]+cv[5]);
	Vector3d v56 = 0.5*(cv[5]+cv[6]);
	Vector3d v67 = 0.5*(cv[6]+cv[7]);
	Vector3d v47 = 0.5*(cv[4]+cv[7]);
	subdivide_cube(data, { cv[0], v01, vbot, v03, v04, vfront, vcent, vleft }, new_pts_in_box, level-1);
	subdivide_cube(data, { v01, cv[1], v12, vbot, vfront, v15, vright, vcent }, new_pts_in_box, level-1);
	subdivide_cube(data, { vbot, v12, cv[2], v23, vcent, vright, v26, vback }, new_pts_in_box, level-1);
	subdivide_cube(data, { v03, vbot, v23, cv[3], vleft, vcent, vback, v37 }, new_pts_in_box, level-1);
	subdivide_cube(data, { v04, vfront, vcent, vleft, cv[4], v45, vtop, v47 }, new_pts_in_box, level-1);
	subdivide_cube(data, { vfront, v15, vright, vcent, v45, cv[5], v56, vtop }, new_pts_in_box, level-1);
	subdivide_cube(data, { vcent, vright, v26, vback, vtop, v56, cv[6], v67 }, new_pts_in_box, level-1);
	subdivide_cube(data, { vleft, vcent, vback, v37, v47, vtop, v67, cv[7] }, new_pts_in_box, level-1);
}



bool EmbeddedMesh::generate(
	const Eigen::MatrixXd &V, // embedded verts
	const Eigen::MatrixXi &F, // embedded faces
	EmbeddedMeshData *emb_mesh, // where embedding is stored
	bool trim_lattice)
{
	emb_mesh->emb_faces = F;
	emb_mesh->emb_rest_x = V;

	AlignedBox<double,3> aabb;
	int nev = V.rows();
	std::vector<int> pts_in_box;
	for (int i=0; i<nev; ++i)
	{
		aabb.extend(V.row(i).transpose());
		pts_in_box.emplace_back(i);
	}

	// Create initial box
	aabb.extend(aabb.min()-Vector3d::Ones()*1e-4);
	aabb.extend(aabb.max()+Vector3d::Ones()*1e-4);
	Vector3d min = aabb.min();
	Vector3d max = aabb.max();
	std::vector<Vector3d> b0 = {
		Vector3d(min[0], min[1], max[2]),
		Vector3d(max[0], min[1], max[2]),
		Vector3d(max[0], min[1], min[2]),
		min,
		Vector3d(min[0], max[1], max[2]),
		max,
		Vector3d(max[0], max[1], min[2]),
		Vector3d(min[0], max[1], min[2])
	};

	LatticeData data;
	data.V = &V;
	subdivide_cube(&data,b0,pts_in_box,3);
	merge_close_vertices(&data);

	// We only want to keep tets that are either
	// a) intersecting the surface mesh
	// b) totally inside the surface mesh
	std::set<int> refd_verts;
	{
		int nf = F.rows();
		std::vector<AlignedBox<double,3> > face_aabb(nf);
		for (int i=0; i<nf; ++i)
		{
			RowVector3i f = F.row(i);
			face_aabb[i].setEmpty();
			for (int j=0; j<3; ++j)
				face_aabb[i].extend(V.row(f[j]).transpose());
		}

		int nt0 = data.tets.size();
		std::vector<int> keep_tet(nt0,1);

		AABBTree<double,3> mesh_tree;
		mesh_tree.init(face_aabb);
		KeepTetThreadData thread_data = {
			.tree = &mesh_tree,
			.pts = &V,
			.faces = &F,
			.tet_x = &data.verts,
			.tets = &data.tets,
			.keep_tet = &keep_tet
		};
		if (trim_lattice)
		{
			TaskParallelSettings settings;
			BLI_parallel_range_settings_defaults(&settings);
			BLI_task_parallel_range(0, nt0, &thread_data, parallel_keep_tet, &settings);
		}

		// Loop over tets and remove as needed.
		// Mark referenced vertices to compute a mapping.
		int tet_idx = 0;
		for (std::vector<Vector4i>::iterator it = data.tets.begin();
			it != data.tets.end(); ++tet_idx)
		{
			bool keep = keep_tet[tet_idx];
			if (keep)
			{
				const Vector4i &t = *it;
				refd_verts.emplace(t[0]);
				refd_verts.emplace(t[1]);
				refd_verts.emplace(t[2]);
				refd_verts.emplace(t[3]);
				++it;
			}
			else { it = data.tets.erase(it); }
		}

	} // end remove unnecessary tets

	// Copy data into matrices and remove unreferenced
	{
		// Computing a mapping of vertices from old to new
		// Delete any unreferenced vertices
		std::unordered_map<int,int> vtx_old_to_new;
		int ntv0 = data.verts.size(); // original num verts
		int ntv1 = refd_verts.size(); // reduced num verts
		BLI_assert(ntv1 <= ntv0);
		emb_mesh->rest_x.resize(ntv1,3);
		int vtx_count = 0;
		for (int i=0; i<ntv0; ++i)
		{
			if (refd_verts.count(i)>0)
			{
				for(int j=0; j<3; ++j){
					emb_mesh->rest_x(vtx_count,j) = data.verts[i][j];
				}
				vtx_old_to_new[i] = vtx_count;
				vtx_count++;
			}
		}

		// Copy tets to matrix data and update vertices
		int nt = data.tets.size();
		emb_mesh->tets.resize(nt,4);
		for(int i=0; i<nt; ++i){
			for(int j=0; j<4; ++j){
				int old_idx = data.tets[i][j];
				BLI_assert(vtx_old_to_new.count(old_idx)>0);
				emb_mesh->tets(i,j) = vtx_old_to_new[old_idx];
			}
		}
	}

	// Now compute the baryweighting for embedded vertices
	return compute_embedding(emb_mesh);

} // end gen lattice




void EmbeddedMesh::compute_masses(
	EmbeddedMeshData *emb_mesh, // where embedding is stored
	Eigen::VectorXd *masses_tets, // masses of the lattice verts
	double density_kgm3)
{
	BLI_assert(emb_mesh != NULL);
	BLI_assert(masses_tets != NULL);
	BLI_assert(density_kgm3 > 0);

	// TODO
	// map the area of the surface to the tet vertices

	// Source: https://github.com/mattoverby/mclscene/blob/master/include/MCL/TetMesh.hpp
	// Computes volume-weighted masses for each vertex
	// density_kgm3 is the unit-volume density
	int nx = emb_mesh->rest_x.rows();
	masses_tets->resize(nx);
	masses_tets->setZero();
	int n_tets = emb_mesh->tets.rows();
	for (int t=0; t<n_tets; ++t)
	{
		RowVector4i tet = emb_mesh->tets.row(t);
		RowVector3d tet_v0 = emb_mesh->rest_x.row(tet[0]);
		Matrix3d edges;
		edges.col(0) = emb_mesh->rest_x.row(tet[1]) - tet_v0;
		edges.col(1) = emb_mesh->rest_x.row(tet[2]) - tet_v0;
		edges.col(2) = emb_mesh->rest_x.row(tet[3]) - tet_v0;
		double vol = std::abs((edges).determinant()/6.f);
		double tet_mass = density_kgm3 * vol;
		masses_tets->operator[](tet[0]) += tet_mass / 4.f;
		masses_tets->operator[](tet[1]) += tet_mass / 4.f;
		masses_tets->operator[](tet[2]) += tet_mass / 4.f;
		masses_tets->operator[](tet[3]) += tet_mass / 4.f;
	}

	// Verify masses
	for (int i=0; i<nx; ++i)
	{
		if (masses_tets->operator[](i) <= 0.0)
		{
			printf("**EmbeddedMesh::compute_masses Error: unreferenced vertex\n");
			masses_tets->operator[](i)=1;
		}
	}
} // end compute masses

typedef struct FindTetThreadData {
	AABBTree<double,3> *tree;
	EmbeddedMeshData *emb_mesh; // thread sets vtx_to_tet and barys
} FindTetThreadData;

static void parallel_point_in_tet(
	void *__restrict userdata,
	const int i,
	const TaskParallelTLS *__restrict UNUSED(tls))
{
	FindTetThreadData *td = (FindTetThreadData*)userdata;
	Vector3d pt = td->emb_mesh->emb_rest_x.row(i);
	PointInTetMeshTraverse<double> traverser(pt, &td->emb_mesh->rest_x, &td->emb_mesh->tets);
	bool success = td->tree->traverse(traverser);
	int tet_idx = traverser.output.prim;
	if (success && tet_idx >= 0)
	{
		RowVector4i tet = td->emb_mesh->tets.row(tet_idx);
		Vector3d t[4] = {
			td->emb_mesh->rest_x.row(tet[0]),
			td->emb_mesh->rest_x.row(tet[1]),
			td->emb_mesh->rest_x.row(tet[2]),
			td->emb_mesh->rest_x.row(tet[3])
		};
		td->emb_mesh->emb_vtx_to_tet[i] = tet_idx;
		Vector4d b = barycoords::point_tet(pt,t[0],t[1],t[2],t[3]);
		td->emb_mesh->emb_barys.row(i) = b;
	}
} // end parallel lin solve

bool EmbeddedMesh::compute_embedding(
	EmbeddedMeshData *emb_mesh)
{
	BLI_assert(emb_mesh!=NULL);

	int nv = emb_mesh->emb_rest_x.rows();
	if (nv==0)
	{
		printf("**EmbeddedMesh::compute_embedding: No embedded vertices");
		return false;
	}

	emb_mesh->emb_barys.resize(nv,4);
	emb_mesh->emb_barys.setOnes();
	emb_mesh->emb_vtx_to_tet.resize(nv);
	int nt = emb_mesh->tets.rows();

	// BVH tree for finding point-in-tet and computing
	// barycoords for each embedded vertex
	std::vector<AlignedBox<double,3> > tet_aabbs;
	tet_aabbs.resize(nt);
	Vector3d veta = Vector3d::Ones()*1e-12;
	for (int i=0; i<nt; ++i)
	{
		tet_aabbs[i].setEmpty();
		RowVector4i tet = emb_mesh->tets.row(i);
		for (int j=0; j<4; ++j)
			tet_aabbs[i].extend(emb_mesh->rest_x.row(tet[j]).transpose());

		tet_aabbs[i].extend(tet_aabbs[i].min()-veta);
		tet_aabbs[i].extend(tet_aabbs[i].max()+veta);
	}

	AABBTree<double,3> tree;
	tree.init(tet_aabbs);

	FindTetThreadData thread_data = {
		.tree = &tree,
		.emb_mesh = emb_mesh
	};
	TaskParallelSettings settings;
	BLI_parallel_range_settings_defaults(&settings);
	BLI_task_parallel_range(0, nv, &thread_data, parallel_point_in_tet, &settings);

	// Double check we set (valid) barycoords for every embedded vertex
	const double eps = 1e-8;
	for (int i=0; i<nv; ++i)
	{
		RowVector4d b = emb_mesh->emb_barys.row(i);
		if (b.minCoeff() < -eps)
		{
			printf("**Lattice::generate Error: negative barycoords\n");
			return false;
		}
		if (b.maxCoeff() > 1 + eps)
		{
			printf("**Lattice::generate Error: max barycoord > 1\n");
			return false;
		}
		if (b.sum() > 1 + eps)
		{
			printf("**Lattice::generate Error: barycoord sum > 1\n");
			return false;
		}
	}


// Export the mesh for funsies
//std::ofstream of("v_lattice.txt"); of << emb_mesh->rest_x; of.close();
//std::ofstream of2("t_lattice.txt"); of2 << emb_mesh->tets; of2.close();

	return true;

} // end compute vtx to tet mapping

Eigen::Vector3d EmbeddedMesh::get_mapped_vertex(
	const EmbeddedMeshData *emb_mesh,
	const Eigen::MatrixXd *x_data,
	int idx)
{
    int t_idx = emb_mesh->emb_vtx_to_tet[idx];
    RowVector4i tet = emb_mesh->tets.row(t_idx);
    RowVector4d b = emb_mesh->emb_barys.row(idx);
    return Vector3d(
		x_data->row(tet[0]) * b[0] +
		x_data->row(tet[1]) * b[1] +
		x_data->row(tet[2]) * b[2] +
		x_data->row(tet[3]) * b[3]);
}

} // namespace admmpd