Welcome to mirror list, hosted at ThFree Co, Russian Federation.

admmpd_solver.cpp « src « softbody « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: ad64e4ed277670735a0e1dc61aaa4c40b2172be1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404



#include "admmpd_solver.h"
#include "admmpd_lattice.h"
#include "admmpd_energy.h"
#include "admmpd_collision.h"

#include <Eigen/Geometry>
#include <Eigen/Sparse>

#include <stdio.h>
#include <iostream>

#include "BLI_task.h" // threading

namespace admmpd {
using namespace Eigen;
template <typename T> using RowSparseMatrix = SparseMatrix<T,RowMajor>;

typedef struct ThreadData {
	const Options *options;
	Data *data;
} ThreadData;

bool Solver::init(
    const Eigen::MatrixXd &V,
	const Eigen::MatrixXi &T,
    const Options *options,
    Data *data)
{
	if (!data || !options)
		throw std::runtime_error("init: data/options null");

	data->x = V;
	data->tets = T;
	compute_matrices(options,data);
	return true;
} // end init

int Solver::solve(
	const Options *options,
	Data *data)
{

	// Init the solve which computes
	// quantaties like M_xbar and makes sure
	// the variables are sized correctly.
	init_solve(options,data);

	// Begin solver loop
	int iters = 0;
	for (; iters < options->max_admm_iters; ++iters)
	{

		solve_local_step(options,data);
		update_constraints(options,data);

		data->b.noalias() = data->M_xbar + data->DtW2*(data->z-data->u);
		solve_conjugate_gradients(options,data);

	} // end solver iters

	double dt = options->timestep_s;
	if (dt > 0.0)
		data->v.noalias() = (data->x-data->x_start)*(1.0/dt);

	return iters;
} // end solve

void Solver::init_solve(
	const Options *options,
	Data *data)
{
	int nx = data->x.rows();
	if (data->M_xbar.rows() != nx)
		data->M_xbar.resize(nx,3);

	// velocity and position
	double dt = std::max(0.0, options->timestep_s);
	data->x_start = data->x;
	for (int i=0; i<nx; ++i)
	{
		data->v.row(i) += options->grav;
		data->M_xbar.row(i) =
			data->m[i] * data->x.row(i) +
			dt*data->m[i]*data->v.row(i);
	}

	// ADMM variables
	data->Dx.noalias() = data->D * data->x;
	data->z = data->Dx;
	data->u.setZero();

} // end init solve

static void parallel_zu_update(
	void *__restrict userdata,
	const int i,
	const TaskParallelTLS *__restrict UNUSED(tls))
{
	Lame lame; // TODO lame params as input
	ThreadData *td = (ThreadData*)userdata;
	EnergyTerm().update(
		td->data->indices[i][0],
		lame,
		td->data->rest_volumes[i],
		td->data->weights[i],
		&td->data->x,
		&td->data->Dx,
		&td->data->z,
		&td->data->u );
} // end parallel zu update

void Solver::solve_local_step(
	const Options *options,
	Data *data)
{
	int ne = data->rest_volumes.size();
  	ThreadData thread_data = {.options=options, .data = data};
	TaskParallelSettings settings;
	BLI_parallel_range_settings_defaults(&settings);
	BLI_task_parallel_range(0, ne, &thread_data, parallel_zu_update, &settings);
} // end local step

void Solver::update_constraints(
	const Options *options,
	Data *data)
{

	std::vector<double> l_coeffs;
	std::vector<Eigen::Triplet<double> > trips_x;
    std::vector<Eigen::Triplet<double> > trips_y;
    std::vector<Eigen::Triplet<double> > trips_z;

	// TODO collision detection
	FloorCollider().jacobian(
		&data->x,
		&trips_x,
		&trips_y,
		&trips_z,
		&l_coeffs);

	// Check number of constraints.
	// If no constraints, clear Jacobian.
	int nx = data->x.rows();
	int nc = l_coeffs.size();
	if (nc==0)
	{
		data->l.setZero();
		for (int i=0; i<3; ++i)
			data->K[i].setZero();

		return;
	}

	// Otherwise update the data.
	data->l = Map<VectorXd>(l_coeffs.data(),nc);
	data->K[0].resize(nc,nx);
	data->K[0].setFromTriplets(trips_x.begin(),trips_x.end());
	data->K[1].resize(nc,nx);
	data->K[1].setFromTriplets(trips_y.begin(),trips_y.end());
	data->K[2].resize(nc,nx);
	data->K[2].setFromTriplets(trips_z.begin(),trips_z.end());

} // end update constraints

typedef struct LinSolveThreadData {
	Data *data;
	MatrixXd *x;
	MatrixXd *b;
} LinSolveThreadData;

static void parallel_lin_solve(
	void *__restrict userdata,
	const int i,
	const TaskParallelTLS *__restrict UNUSED(tls))
{
	LinSolveThreadData *td = (LinSolveThreadData*)userdata;
	td->x->col(i) = td->data->ldltA.solve(td->b->col(i));
} // end parallel lin solve

void Solver::solve_conjugate_gradients(
	const Options *options,
	Data *data)
{
	// Solve Ax = b in parallel
	auto solve_Ax_b = [](
		Data *data_,
		MatrixXd *x_,
		MatrixXd *b_)
	{
		LinSolveThreadData thread_data = {.data=data_, .x=x_, .b=b_};
		TaskParallelSettings settings;
		BLI_parallel_range_settings_defaults(&settings);
		BLI_task_parallel_range(0, 3, &thread_data, parallel_lin_solve, &settings);
	};

	// If we don't have any constraints,
	// we don't need to perform CG
	if (std::max(std::max(
		data->K[0].nonZeros(),
		data->K[1].nonZeros()),
		data->K[2].nonZeros())==0)
	{
		solve_Ax_b(data,&data->x,&data->b);
		return;
	}

	// Inner product of matrices interpreted
	// if they were instead vectorized
	auto mat_inner = [](
		const MatrixXd &A,
		const MatrixXd &B)
	{
		double dot = 0.0;
		int nr = std::min(A.rows(), B.rows());
		for( int i=0; i<nr; ++i )
			for(int j=0; j<3; ++j)
				dot += A(i,j)*B(i,j);

		return dot;
	};

	double eps = options->min_res;
	MatrixXd b = data->b;
	int nv = b.rows();
	RowSparseMatrix<double> A[3];
	MatrixXd r(b.rows(),3);
	MatrixXd z(nv,3);
	MatrixXd p(nv,3);
	MatrixXd Ap(nv,3);

	for (int i=0; i<3; ++i)
	{
		RowSparseMatrix<double> Kt = data->K[i].transpose();
		A[i] = data->A + data->spring_k*RowSparseMatrix<double>(Kt*data->K[i]);
		b.col(i) += data->spring_k*Kt*data->l;
		r.col(i) = b.col(i) - A[i]*data->x.col(i);
	}
	solve_Ax_b(data,&z,&r);
	p = z;

	for (int iter=0; iter<options->max_cg_iters; ++iter)
	{
		for( int i=0; i<3; ++i )
			Ap.col(i) = A[i]*p.col(i);

		double p_dot_Ap = mat_inner(p,Ap);
		if( p_dot_Ap==0.0 )
			break;

		double zk_dot_rk = mat_inner(z,r);
		if( zk_dot_rk==0.0 )
			break;

		double alpha = zk_dot_rk / p_dot_Ap;
		data->x += alpha * p;
		r -= alpha * Ap;
		if( r.lpNorm<Infinity>() < eps )
			break;
		solve_Ax_b(data,&z,&r);
		double beta = mat_inner(z,r) / zk_dot_rk;
		p = z + beta*p;
	}
} // end solve conjugate gradients

void Solver::compute_matrices(
	const Options *options,
	Data *data)
{
	// Allocate per-vertex data
	int nx = data->x.rows();
	data->x_start = data->x;
	data->M_xbar.resize(nx,3);
	data->M_xbar.setZero();
	data->Dx.resize(nx,3);
	data->Dx.setZero();
	if (data->v.rows() != nx)
	{
		data->v.resize(nx,3);
		data->v.setZero();
	}
	if (data->m.rows() != nx)
		compute_masses(options,data);

	// Add per-element energies to data
	std::vector< Triplet<double> > trips;
	append_energies(options,data,trips);
	int n_row_D = trips.back().row()+1;
	double dt2 = options->timestep_s * options->timestep_s;
	if (dt2 <= 0)
		dt2 = 1.0; // static solve

	// Weight matrix
	RowSparseMatrix<double> W2(n_row_D,n_row_D);
	VectorXi W_nnz = VectorXi::Ones(n_row_D);
	W2.reserve(W_nnz);
	int ne = data->indices.size();
	for (int i=0; i<ne; ++i)
	{
		const Vector2i &idx = data->indices[i];
		for (int j=0; j<idx[1]; ++j)
		{
			W2.coeffRef(idx[0]+j,idx[0]+j) = data->weights[i]*data->weights[i];
		}
	}

	// Weighted Laplacian
	data->D.resize(n_row_D,nx);
	data->D.setFromTriplets(trips.begin(), trips.end());
	data->Dt = data->D.transpose();
	data->DtW2 = dt2 * data->Dt * W2;
	data->A = data->DtW2 * data->D;
	for (int i=0; i<nx; ++i)
		data->A.coeffRef(i,i) += data->m[i];

	data->ldltA.compute(data->A);
	data->b.resize(nx,3);
	data->b.setZero();

	data->spring_k = options->mult_k*data->A.diagonal().maxCoeff();
	data->l = VectorXd::Zero(1);
	for (int i=0; i<3; ++i)
		data->K[i].resize(1,nx);

	// ADMM variables
	data->z.resize(n_row_D,3);
	data->z.setZero();
	data->u.resize(n_row_D,3);
	data->u.setZero();

} // end compute matrices

void Solver::compute_masses(
	const Options *options,
	Data *data)
{
	// Source: https://github.com/mattoverby/mclscene/blob/master/include/MCL/TetMesh.hpp
	// Computes volume-weighted masses for each vertex
	// density_kgm3 is the unit-volume density (e.g. soft rubber: 1100)
	double density_kgm3 = 1100;
	data->m.resize(data->x.rows());
	data->m.setZero();
	int n_tets = data->tets.rows();
	for (int t=0; t<n_tets; ++t)
	{
		RowVector4i tet = data->tets.row(t);
		Matrix3d edges;
		edges.col(0) = data->x.row(tet[1]) - data->x.row(tet[0]);
		edges.col(1) = data->x.row(tet[2]) - data->x.row(tet[0]);
		edges.col(2) = data->x.row(tet[3]) - data->x.row(tet[0]);
		double v = std::abs((edges).determinant()/6.f);
		double tet_mass = density_kgm3 * v;
		data->m[ tet[0] ] += tet_mass / 4.f;
		data->m[ tet[1] ] += tet_mass / 4.f;
		data->m[ tet[2] ] += tet_mass / 4.f;
		data->m[ tet[3] ] += tet_mass / 4.f;
	}
}

void Solver::append_energies(
	const Options *options,
	Data *data,
	std::vector<Triplet<double> > &D_triplets)
{
	int nt = data->tets.rows();
	if (nt==0)
		return;

	data->indices.reserve(nt);
	data->rest_volumes.reserve(nt);
	data->weights.reserve(nt);
	Lame lame;

	int energy_index = 0;
	for (int i=0; i<nt; ++i)
	{
		RowVector4i ele = data->tets.row(i);

		data->rest_volumes.emplace_back();
		data->weights.emplace_back();
		int energy_dim = EnergyTerm().init_tet(
			energy_index,
			lame,
			ele,
			&data->x,
			data->rest_volumes.back(),
			data->weights.back(),
			D_triplets );

		// Error in initialization
		if( energy_dim <= 0 ){
			data->rest_volumes.pop_back();
			data->weights.pop_back();
			continue;
		}

		data->indices.emplace_back(energy_index, energy_dim);
		energy_index += energy_dim;
	}
} // end append energies

} // namespace admmpd