Welcome to mirror list, hosted at ThFree Co, Russian Federation.

admmpd_solver.cpp « src « softbody « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: eb2222ef3bba794dcdd8cb67eb062161dfc18c28 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200



#include "admmpd_solver.h"
#include "admmpd_lattice.h"
#include "admmpd_energy.h"

#include <Eigen/Geometry>
#include <Eigen/Sparse>

#include <stdio.h>

namespace admmpd {
using namespace Eigen;
template <typename T> using RowSparseMatrix = SparseMatrix<T,RowMajor>;

bool Solver::init(
    const Eigen::MatrixXd &V,
	const Eigen::MatrixXi &T,
    const ADMMPD_Options *options,
    ADMMPD_Data *data)
{
	if (!data || !options)
		throw std::runtime_error("init: data/options null");

	data->x = V;
	data->tets = T;
	compute_matrices(options,data);
	return true;
} // end init

void Solver::init_solve(
	const ADMMPD_Options *options,
	ADMMPD_Data *data)
{
	double dt = std::max(0.0, options->timestep_s);
	int nx = data->x.rows();
	if (data->M_xbar.rows() != nx)
		data->M_xbar.resize(nx,3);

	// velocity and position
	data->x_start = data->x;
	for( int i=0; i<nx; ++i )
	{
		data->v.row(i) += options->grav;
		data->M_xbar.row(i) =
			data->m[i] * data->x.row(i) +
			dt*data->m[i]*data->v.row(i);
	}

	// ADMM variables
	data->Dx.noalias() = data->D * data->x;
	data->z = data->Dx;
	data->z_prev = data->z;
	data->u.setZero();
	data->u_prev.setZero();

} // end init solve

int Solver::solve(
	const ADMMPD_Options *options,
	ADMMPD_Data *data)
{
	// Init the solve which computes
	// quantaties like M_xbar and makes sure
	// the variables are sized correctly.
	init_solve(options,data);

	int ne = data->rest_volumes.size();
	Lame lame;

	// Begin solver loop
	int iters = 0;
	int max_iters = options->max_iters < 0 ? 10000 : options->max_iters;
	for (; iters < max_iters; ++iters)
	{
		// Local step
		data->Dx.noalias() = data->D * data->x;
		data->z_prev.noalias() = data->z;
		data->u_prev.noalias() = data->u;
		for(int i=0; i<ne; ++i)
		{
			EnergyTerm().update(
				data->indices[i][0],
				lame,
				data->rest_volumes[i],
				data->weights[i],
				&data->x,
				&data->Dx,
				&data->z,
				&data->u );
		}

		// Global step
		data->b.noalias() = data->M_xbar + data->DtW2*(data->z-data->u);
		data->x.noalias() = data->ldltA.solve(data->b);

	} // end solver iters

	double dt = std::max(0.0, options->timestep_s);
	if (dt > 0.0)
		data->v.noalias() = (data->x-data->x_start)*(1.0/dt);

	return iters;
} // end solve

void Solver::compute_matrices(
	const ADMMPD_Options *options,
	ADMMPD_Data *data)
{
	// Allocate per-vertex data
	int nx = data->x.rows();
	data->x_start = data->x;
	data->M_xbar.resize(nx,3);
	data->M_xbar.setZero();
	data->Dx.resize(nx,3);
	data->Dx.setZero();
	if (data->v.rows() != nx)
	{
		data->v.resize(nx,3);
		data->v.setZero();
	}
	if (data->m.rows() != nx)
	{ // TODO get from BodyPoint
		data->m.resize(nx);
		data->m.setOnes();
	}

	// Add per-element energies to data
	std::vector< Triplet<double> > trips;
	append_energies(options,data,trips);
	int nw = trips.back().row()+1;

	// Global matrix
	data->D.resize(nw,nx);
	data->D.setFromTriplets(trips.begin(), trips.end());
	data->Dt = data->D.transpose();
	VectorXd w_diag = Map<VectorXd>(data->weights.data(), data->weights.size());
	data->DtW2 = data->Dt * w_diag.asDiagonal() * w_diag.asDiagonal();
	data->A = data->DtW2 * data->D;
	data->A.diagonal() += data->m;
	data->ldltA.compute(data->A);
	data->b.resize(nx,3);
	data->b.setZero();

	data->z.resize(nw,3);
	data->z.setZero();
	data->z_prev.resize(nw,3);
	data->z_prev.setZero();
	data->u.resize(nw,3);
	data->u.setZero();
	data->u_prev.resize(nw,3);
	data->u_prev.setZero();

} // end compute matrices

void Solver::append_energies(
	const ADMMPD_Options *options,
	ADMMPD_Data *data,
	std::vector<Triplet<double> > &D_triplets)
{
	int nt = data->tets.rows();
	if (nt==0)
		return;

	data->indices.reserve(nt);
	data->rest_volumes.reserve(nt);
	data->weights.reserve(nt);
	Lame lame;

	int energy_index = 0;
	for (int i=0; i<nt; ++i)
	{
		data->rest_volumes.emplace_back();
		data->weights.emplace_back();
		int energy_dim = 0;

		RowVector4i ele = data->tets.row(i);
		energy_dim = EnergyTerm().init_tet(
			energy_index,
			lame,
			ele,
			&data->x,
			data->rest_volumes.back(),
			data->weights.back(),
			D_triplets );

		// Error in initialization
		if( energy_dim <= 0 ){
			data->rest_volumes.pop_back();
			data->weights.pop_back();
			continue;
		}

		data->indices.emplace_back(energy_index, energy_dim);
		energy_index += energy_dim;
	}
} // end append energies

} // namespace admmpd