Welcome to mirror list, hosted at ThFree Co, Russian Federation.

build.cpp « bvh « cycles « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: cf03f05de607cc795246cc8eb6ccd9fe0d2f7d90 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
/* SPDX-License-Identifier: Apache-2.0
 * Adapted from code copyright 2009-2010 NVIDIA Corporation
 * Modifications Copyright 2011-2022 Blender Foundation. */

#include "bvh/build.h"

#include "bvh/binning.h"
#include "bvh/node.h"
#include "bvh/params.h"
#include "bvh/split.h"

#include "scene/curves.h"
#include "scene/hair.h"
#include "scene/mesh.h"
#include "scene/object.h"
#include "scene/pointcloud.h"
#include "scene/scene.h"

#include "util/algorithm.h"
#include "util/foreach.h"
#include "util/log.h"
#include "util/progress.h"
#include "util/queue.h"
#include "util/simd.h"
#include "util/stack_allocator.h"
#include "util/time.h"

CCL_NAMESPACE_BEGIN

/* Constructor / Destructor */

BVHBuild::BVHBuild(const vector<Object *> &objects_,
                   array<int> &prim_type_,
                   array<int> &prim_index_,
                   array<int> &prim_object_,
                   array<float2> &prim_time_,
                   const BVHParams &params_,
                   Progress &progress_)
    : objects(objects_),
      prim_type(prim_type_),
      prim_index(prim_index_),
      prim_object(prim_object_),
      prim_time(prim_time_),
      params(params_),
      progress(progress_),
      progress_start_time(0.0),
      unaligned_heuristic(objects_)
{
  spatial_min_overlap = 0.0f;
}

BVHBuild::~BVHBuild()
{
}

/* Adding References */

void BVHBuild::add_reference_triangles(BoundBox &root,
                                       BoundBox &center,
                                       Mesh *mesh,
                                       int object_index)
{
  const PrimitiveType primitive_type = mesh->primitive_type();
  const Attribute *attr_mP = NULL;
  if (mesh->has_motion_blur()) {
    attr_mP = mesh->attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
  }
  const size_t num_triangles = mesh->num_triangles();
  for (uint j = 0; j < num_triangles; j++) {
    Mesh::Triangle t = mesh->get_triangle(j);
    const float3 *verts = &mesh->verts[0];
    if (attr_mP == NULL) {
      BoundBox bounds = BoundBox::empty;
      t.bounds_grow(verts, bounds);
      if (bounds.valid() && t.valid(verts)) {
        references.push_back(BVHReference(bounds, j, object_index, primitive_type));
        root.grow(bounds);
        center.grow(bounds.center2());
      }
    }
    else if (params.num_motion_triangle_steps == 0 || params.use_spatial_split) {
      /* Motion triangles, simple case: single node for the whole
       * primitive. Lowest memory footprint and faster BVH build but
       * least optimal ray-tracing.
       */
      /* TODO(sergey): Support motion steps for spatially split BVH. */
      const size_t num_verts = mesh->verts.size();
      const size_t num_steps = mesh->motion_steps;
      const float3 *vert_steps = attr_mP->data_float3();
      BoundBox bounds = BoundBox::empty;
      t.bounds_grow(verts, bounds);
      for (size_t step = 0; step < num_steps - 1; step++) {
        t.bounds_grow(vert_steps + step * num_verts, bounds);
      }
      if (bounds.valid()) {
        references.push_back(BVHReference(bounds, j, object_index, primitive_type));
        root.grow(bounds);
        center.grow(bounds.center2());
      }
    }
    else {
      /* Motion triangles, trace optimized case:  we split triangle
       * primitives into separate nodes for each of the time steps.
       * This way we minimize overlap of neighbor triangle primitives.
       */
      const int num_bvh_steps = params.num_motion_triangle_steps * 2 + 1;
      const float num_bvh_steps_inv_1 = 1.0f / (num_bvh_steps - 1);
      const size_t num_verts = mesh->verts.size();
      const size_t num_steps = mesh->motion_steps;
      const float3 *vert_steps = attr_mP->data_float3();
      /* Calculate bounding box of the previous time step.
       * Will be reused later to avoid duplicated work on
       * calculating BVH time step boundbox.
       */
      float3 prev_verts[3];
      t.motion_verts(verts, vert_steps, num_verts, num_steps, 0.0f, prev_verts);
      BoundBox prev_bounds = BoundBox::empty;
      prev_bounds.grow(prev_verts[0]);
      prev_bounds.grow(prev_verts[1]);
      prev_bounds.grow(prev_verts[2]);
      /* Create all primitive time steps, */
      for (int bvh_step = 1; bvh_step < num_bvh_steps; ++bvh_step) {
        const float curr_time = (float)(bvh_step)*num_bvh_steps_inv_1;
        float3 curr_verts[3];
        t.motion_verts(verts, vert_steps, num_verts, num_steps, curr_time, curr_verts);
        BoundBox curr_bounds = BoundBox::empty;
        curr_bounds.grow(curr_verts[0]);
        curr_bounds.grow(curr_verts[1]);
        curr_bounds.grow(curr_verts[2]);
        BoundBox bounds = prev_bounds;
        bounds.grow(curr_bounds);
        if (bounds.valid()) {
          const float prev_time = (float)(bvh_step - 1) * num_bvh_steps_inv_1;
          references.push_back(
              BVHReference(bounds, j, object_index, primitive_type, prev_time, curr_time));
          root.grow(bounds);
          center.grow(bounds.center2());
        }
        /* Current time boundbox becomes previous one for the
         * next time step.
         */
        prev_bounds = curr_bounds;
      }
    }
  }
}

void BVHBuild::add_reference_curves(BoundBox &root, BoundBox &center, Hair *hair, int object_index)
{
  const Attribute *curve_attr_mP = NULL;
  if (hair->has_motion_blur()) {
    curve_attr_mP = hair->attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
  }

  const PrimitiveType primitive_type = hair->primitive_type();

  const size_t num_curves = hair->num_curves();
  for (uint j = 0; j < num_curves; j++) {
    const Hair::Curve curve = hair->get_curve(j);
    const float *curve_radius = &hair->get_curve_radius()[0];
    for (int k = 0; k < curve.num_keys - 1; k++) {
      if (curve_attr_mP == NULL) {
        /* Really simple logic for static hair. */
        BoundBox bounds = BoundBox::empty;
        curve.bounds_grow(k, &hair->get_curve_keys()[0], curve_radius, bounds);
        if (bounds.valid()) {
          int packed_type = PRIMITIVE_PACK_SEGMENT(primitive_type, k);
          references.push_back(BVHReference(bounds, j, object_index, packed_type));
          root.grow(bounds);
          center.grow(bounds.center2());
        }
      }
      else if (params.num_motion_curve_steps == 0 || params.use_spatial_split) {
        /* Simple case of motion curves: single node for the while
         * shutter time. Lowest memory usage but less optimal
         * rendering.
         */
        /* TODO(sergey): Support motion steps for spatially split BVH. */
        BoundBox bounds = BoundBox::empty;
        curve.bounds_grow(k, &hair->get_curve_keys()[0], curve_radius, bounds);
        const size_t num_keys = hair->get_curve_keys().size();
        const size_t num_steps = hair->get_motion_steps();
        const float3 *key_steps = curve_attr_mP->data_float3();
        for (size_t step = 0; step < num_steps - 1; step++) {
          curve.bounds_grow(k, key_steps + step * num_keys, curve_radius, bounds);
        }
        if (bounds.valid()) {
          int packed_type = PRIMITIVE_PACK_SEGMENT(primitive_type, k);
          references.push_back(BVHReference(bounds, j, object_index, packed_type));
          root.grow(bounds);
          center.grow(bounds.center2());
        }
      }
      else {
        /* Motion curves, trace optimized case:  we split curve keys
         * primitives into separate nodes for each of the time steps.
         * This way we minimize overlap of neighbor curve primitives.
         */
        const int num_bvh_steps = params.num_motion_curve_steps * 2 + 1;
        const float num_bvh_steps_inv_1 = 1.0f / (num_bvh_steps - 1);
        const size_t num_steps = hair->get_motion_steps();
        const float3 *curve_keys = &hair->get_curve_keys()[0];
        const float3 *key_steps = curve_attr_mP->data_float3();
        const size_t num_keys = hair->get_curve_keys().size();
        /* Calculate bounding box of the previous time step.
         * Will be reused later to avoid duplicated work on
         * calculating BVH time step boundbox.
         */
        float4 prev_keys[4];
        curve.cardinal_motion_keys(curve_keys,
                                   curve_radius,
                                   key_steps,
                                   num_keys,
                                   num_steps,
                                   0.0f,
                                   k - 1,
                                   k,
                                   k + 1,
                                   k + 2,
                                   prev_keys);
        BoundBox prev_bounds = BoundBox::empty;
        curve.bounds_grow(prev_keys, prev_bounds);
        /* Create all primitive time steps, */
        for (int bvh_step = 1; bvh_step < num_bvh_steps; ++bvh_step) {
          const float curr_time = (float)(bvh_step)*num_bvh_steps_inv_1;
          float4 curr_keys[4];
          curve.cardinal_motion_keys(curve_keys,
                                     curve_radius,
                                     key_steps,
                                     num_keys,
                                     num_steps,
                                     curr_time,
                                     k - 1,
                                     k,
                                     k + 1,
                                     k + 2,
                                     curr_keys);
          BoundBox curr_bounds = BoundBox::empty;
          curve.bounds_grow(curr_keys, curr_bounds);
          BoundBox bounds = prev_bounds;
          bounds.grow(curr_bounds);
          if (bounds.valid()) {
            const float prev_time = (float)(bvh_step - 1) * num_bvh_steps_inv_1;
            int packed_type = PRIMITIVE_PACK_SEGMENT(primitive_type, k);
            references.push_back(
                BVHReference(bounds, j, object_index, packed_type, prev_time, curr_time));
            root.grow(bounds);
            center.grow(bounds.center2());
          }
          /* Current time boundbox becomes previous one for the
           * next time step.
           */
          prev_bounds = curr_bounds;
        }
      }
    }
  }
}

void BVHBuild::add_reference_points(BoundBox &root,
                                    BoundBox &center,
                                    PointCloud *pointcloud,
                                    int i)
{
  const Attribute *point_attr_mP = NULL;
  if (pointcloud->has_motion_blur()) {
    point_attr_mP = pointcloud->attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
  }

  const float3 *points_data = &pointcloud->points[0];
  const float *radius_data = &pointcloud->radius[0];
  const size_t num_points = pointcloud->num_points();
  const float3 *motion_data = (point_attr_mP) ? point_attr_mP->data_float3() : NULL;
  const size_t num_steps = pointcloud->get_motion_steps();

  if (point_attr_mP == NULL) {
    /* Really simple logic for static points. */
    for (uint j = 0; j < num_points; j++) {
      const PointCloud::Point point = pointcloud->get_point(j);
      BoundBox bounds = BoundBox::empty;
      point.bounds_grow(points_data, radius_data, bounds);
      if (bounds.valid()) {
        references.push_back(BVHReference(bounds, j, i, PRIMITIVE_POINT));
        root.grow(bounds);
        center.grow(bounds.center2());
      }
    }
  }
  else if (params.num_motion_point_steps == 0 || params.use_spatial_split) {
    /* Simple case of motion points: single node for the whole
     * shutter time. Lowest memory usage but less optimal
     * rendering.
     */
    /* TODO(sergey): Support motion steps for spatially split BVH. */
    for (uint j = 0; j < num_points; j++) {
      const PointCloud::Point point = pointcloud->get_point(j);
      BoundBox bounds = BoundBox::empty;
      point.bounds_grow(points_data, radius_data, bounds);
      for (size_t step = 0; step < num_steps - 1; step++) {
        point.bounds_grow(motion_data + step * num_points, radius_data, bounds);
      }
      if (bounds.valid()) {
        references.push_back(BVHReference(bounds, j, i, PRIMITIVE_MOTION_POINT));
        root.grow(bounds);
        center.grow(bounds.center2());
      }
    }
  }
  else {
    /* Motion points, trace optimized case:  we split point
     * primitives into separate nodes for each of the time steps.
     * This way we minimize overlap of neighbor point primitives.
     */
    const int num_bvh_steps = params.num_motion_point_steps * 2 + 1;
    const float num_bvh_steps_inv_1 = 1.0f / (num_bvh_steps - 1);

    for (uint j = 0; j < num_points; j++) {
      const PointCloud::Point point = pointcloud->get_point(j);
      const size_t num_steps = pointcloud->get_motion_steps();
      const float3 *point_steps = point_attr_mP->data_float3();

      /* Calculate bounding box of the previous time step.
       * Will be reused later to avoid duplicated work on
       * calculating BVH time step boundbox.
       */
      float4 prev_key = point.motion_key(
          points_data, radius_data, point_steps, num_points, num_steps, 0.0f, j);
      BoundBox prev_bounds = BoundBox::empty;
      point.bounds_grow(prev_key, prev_bounds);
      /* Create all primitive time steps, */
      for (int bvh_step = 1; bvh_step < num_bvh_steps; ++bvh_step) {
        const float curr_time = (float)(bvh_step)*num_bvh_steps_inv_1;
        float4 curr_key = point.motion_key(
            points_data, radius_data, point_steps, num_points, num_steps, curr_time, j);
        BoundBox curr_bounds = BoundBox::empty;
        point.bounds_grow(curr_key, curr_bounds);
        BoundBox bounds = prev_bounds;
        bounds.grow(curr_bounds);
        if (bounds.valid()) {
          const float prev_time = (float)(bvh_step - 1) * num_bvh_steps_inv_1;
          references.push_back(
              BVHReference(bounds, j, i, PRIMITIVE_MOTION_POINT, prev_time, curr_time));
          root.grow(bounds);
          center.grow(bounds.center2());
        }
        /* Current time boundbox becomes previous one for the
         * next time step.
         */
        prev_bounds = curr_bounds;
      }
    }
  }
}

void BVHBuild::add_reference_geometry(BoundBox &root,
                                      BoundBox &center,
                                      Geometry *geom,
                                      int object_index)
{
  if (geom->geometry_type == Geometry::MESH || geom->geometry_type == Geometry::VOLUME) {
    Mesh *mesh = static_cast<Mesh *>(geom);
    add_reference_triangles(root, center, mesh, object_index);
  }
  else if (geom->geometry_type == Geometry::HAIR) {
    Hair *hair = static_cast<Hair *>(geom);
    add_reference_curves(root, center, hair, object_index);
  }
  else if (geom->geometry_type == Geometry::POINTCLOUD) {
    PointCloud *pointcloud = static_cast<PointCloud *>(geom);
    add_reference_points(root, center, pointcloud, object_index);
  }
}

void BVHBuild::add_reference_object(BoundBox &root, BoundBox &center, Object *ob, int i)
{
  references.push_back(BVHReference(ob->bounds, -1, i, 0));
  root.grow(ob->bounds);
  center.grow(ob->bounds.center2());
}

static size_t count_curve_segments(Hair *hair)
{
  size_t num = 0, num_curves = hair->num_curves();

  for (size_t i = 0; i < num_curves; i++)
    num += hair->get_curve(i).num_keys - 1;

  return num;
}

static size_t count_primitives(Geometry *geom)
{
  if (geom->geometry_type == Geometry::MESH || geom->geometry_type == Geometry::VOLUME) {
    Mesh *mesh = static_cast<Mesh *>(geom);
    return mesh->num_triangles();
  }
  else if (geom->geometry_type == Geometry::HAIR) {
    Hair *hair = static_cast<Hair *>(geom);
    return count_curve_segments(hair);
  }
  else if (geom->geometry_type == Geometry::POINTCLOUD) {
    PointCloud *pointcloud = static_cast<PointCloud *>(geom);
    return pointcloud->num_points();
  }

  return 0;
}

void BVHBuild::add_references(BVHRange &root)
{
  /* reserve space for references */
  size_t num_alloc_references = 0;

  foreach (Object *ob, objects) {
    if (params.top_level) {
      if (!ob->is_traceable()) {
        continue;
      }
      if (!ob->get_geometry()->is_instanced()) {
        num_alloc_references += count_primitives(ob->get_geometry());
      }
      else {
        num_alloc_references++;
      }
    }
    else {
      num_alloc_references += count_primitives(ob->get_geometry());
    }
  }

  references.reserve(num_alloc_references);

  /* add references from objects */
  BoundBox bounds = BoundBox::empty, center = BoundBox::empty;
  int i = 0;

  foreach (Object *ob, objects) {
    if (params.top_level) {
      if (!ob->is_traceable()) {
        ++i;
        continue;
      }
      if (!ob->get_geometry()->is_instanced())
        add_reference_geometry(bounds, center, ob->get_geometry(), i);
      else
        add_reference_object(bounds, center, ob, i);
    }
    else
      add_reference_geometry(bounds, center, ob->get_geometry(), i);

    i++;

    if (progress.get_cancel())
      return;
  }

  /* happens mostly on empty meshes */
  if (!bounds.valid())
    bounds.grow(zero_float3());

  root = BVHRange(bounds, center, 0, references.size());
}

/* Build */

BVHNode *BVHBuild::run()
{
  BVHRange root;

  /* add references */
  add_references(root);

  if (progress.get_cancel())
    return NULL;

  /* init spatial splits */
  if (params.top_level) {
    /* NOTE: Technically it is supported by the builder but it's not really
     * optimized for speed yet and not really clear yet if it has measurable
     * improvement on render time. Needs some extra investigation before
     * enabling spatial split for top level BVH.
     */
    params.use_spatial_split = false;
  }

  spatial_min_overlap = root.bounds().safe_area() * params.spatial_split_alpha;
  spatial_free_index = 0;

  need_prim_time = params.use_motion_steps();

  /* init progress updates */
  double build_start_time;
  build_start_time = progress_start_time = time_dt();
  progress_count = 0;
  progress_total = references.size();
  progress_original_total = progress_total;

  prim_type.resize(references.size());
  prim_index.resize(references.size());
  prim_object.resize(references.size());
  if (need_prim_time) {
    prim_time.resize(references.size());
  }
  else {
    prim_time.resize(0);
  }

  /* build recursively */
  BVHNode *rootnode;

  if (params.use_spatial_split) {
    /* Perform multithreaded spatial split build. */
    BVHSpatialStorage *local_storage = &spatial_storage.local();
    rootnode = build_node(root, references, 0, local_storage);
    task_pool.wait_work();
  }
  else {
    /* Perform multithreaded binning build. */
    BVHObjectBinning rootbin(root, (references.size()) ? &references[0] : NULL);
    rootnode = build_node(rootbin, 0);
    task_pool.wait_work();
  }

  /* clean up temporary memory usage by threads */
  spatial_storage.clear();

  /* delete if we canceled */
  if (rootnode) {
    if (progress.get_cancel()) {
      rootnode->deleteSubtree();
      rootnode = NULL;
      VLOG_WORK << "BVH build cancelled.";
    }
    else {
      /*rotate(rootnode, 4, 5);*/
      rootnode->update_visibility();
      rootnode->update_time();
    }
    if (rootnode != NULL) {
      VLOG_WORK << "BVH build statistics:\n"
                << "  Build time: " << time_dt() - build_start_time << "\n"
                << "  Total number of nodes: "
                << string_human_readable_number(rootnode->getSubtreeSize(BVH_STAT_NODE_COUNT))
                << "\n"
                << "  Number of inner nodes: "
                << string_human_readable_number(rootnode->getSubtreeSize(BVH_STAT_INNER_COUNT))
                << "\n"
                << "  Number of leaf nodes: "
                << string_human_readable_number(rootnode->getSubtreeSize(BVH_STAT_LEAF_COUNT))
                << "\n"
                << "  Number of unaligned nodes: "
                << string_human_readable_number(rootnode->getSubtreeSize(BVH_STAT_UNALIGNED_COUNT))
                << "\n"
                << "  Allocation slop factor: "
                << ((prim_type.capacity() != 0) ? (float)prim_type.size() / prim_type.capacity() :
                                                  1.0f)
                << "\n"
                << "  Maximum depth: "
                << string_human_readable_number(rootnode->getSubtreeSize(BVH_STAT_DEPTH)) << "\n";
    }
  }

  return rootnode;
}

void BVHBuild::progress_update()
{
  if (time_dt() - progress_start_time < 0.25)
    return;

  double progress_start = (double)progress_count / (double)progress_total;
  double duplicates = (double)(progress_total - progress_original_total) / (double)progress_total;

  string msg = string_printf(
      "Building BVH %.0f%%, duplicates %.0f%%", progress_start * 100.0, duplicates * 100.0);

  progress.set_substatus(msg);
  progress_start_time = time_dt();
}

void BVHBuild::thread_build_node(InnerNode *inner,
                                 int child,
                                 const BVHObjectBinning &range,
                                 int level)
{
  if (progress.get_cancel())
    return;

  /* build nodes */
  BVHNode *node = build_node(range, level);

  /* set child in inner node */
  inner->children[child] = node;

  /* update progress */
  if (range.size() < THREAD_TASK_SIZE) {
    /*rotate(node, INT_MAX, 5);*/

    thread_scoped_lock lock(build_mutex);

    progress_count += range.size();
    progress_update();
  }
}

void BVHBuild::thread_build_spatial_split_node(InnerNode *inner,
                                               int child,
                                               const BVHRange &range,
                                               vector<BVHReference> &references,
                                               int level)
{
  if (progress.get_cancel()) {
    return;
  }

  /* Get per-thread memory for spatial split. */
  BVHSpatialStorage *local_storage = &spatial_storage.local();

  /* build nodes */
  BVHNode *node = build_node(range, references, level, local_storage);

  /* set child in inner node */
  inner->children[child] = node;
}

bool BVHBuild::range_within_max_leaf_size(const BVHRange &range,
                                          const vector<BVHReference> &references) const
{
  size_t size = range.size();
  size_t max_leaf_size = max(max(params.max_triangle_leaf_size, params.max_curve_leaf_size),
                             params.max_point_leaf_size);

  if (size > max_leaf_size)
    return false;

  size_t num_triangles = 0;
  size_t num_motion_triangles = 0;
  size_t num_curves = 0;
  size_t num_motion_curves = 0;
  size_t num_points = 0;
  size_t num_motion_points = 0;

  for (int i = 0; i < size; i++) {
    const BVHReference &ref = references[range.start() + i];

    if (ref.prim_type() & PRIMITIVE_CURVE) {
      if (ref.prim_type() & PRIMITIVE_MOTION) {
        num_motion_curves++;
      }
      else {
        num_curves++;
      }
    }
    else if (ref.prim_type() & PRIMITIVE_TRIANGLE) {
      if (ref.prim_type() & PRIMITIVE_MOTION) {
        num_motion_triangles++;
      }
      else {
        num_triangles++;
      }
    }
    else if (ref.prim_type() & PRIMITIVE_POINT) {
      if (ref.prim_type() & PRIMITIVE_MOTION) {
        num_motion_points++;
      }
      else {
        num_points++;
      }
    }
  }

  return (num_triangles <= params.max_triangle_leaf_size) &&
         (num_motion_triangles <= params.max_motion_triangle_leaf_size) &&
         (num_curves <= params.max_curve_leaf_size) &&
         (num_motion_curves <= params.max_motion_curve_leaf_size) &&
         (num_points <= params.max_point_leaf_size) &&
         (num_motion_points <= params.max_motion_point_leaf_size);
}

/* multithreaded binning builder */
BVHNode *BVHBuild::build_node(const BVHObjectBinning &range, int level)
{
  size_t size = range.size();
  float leafSAH = params.sah_primitive_cost * range.leafSAH;
  float splitSAH = params.sah_node_cost * range.bounds().half_area() +
                   params.sah_primitive_cost * range.splitSAH;

  /* Have at least one inner node on top level, for performance and correct
   * visibility tests, since object instances do not check visibility flag.
   */
  if (!(range.size() > 0 && params.top_level && level == 0)) {
    /* Make leaf node when threshold reached or SAH tells us. */
    if ((params.small_enough_for_leaf(size, level)) ||
        (range_within_max_leaf_size(range, references) && leafSAH < splitSAH)) {
      return create_leaf_node(range, references);
    }
  }

  BVHObjectBinning unaligned_range;
  float unalignedSplitSAH = FLT_MAX;
  float unalignedLeafSAH = FLT_MAX;
  Transform aligned_space;
  bool do_unalinged_split = false;
  if (params.use_unaligned_nodes && splitSAH > params.unaligned_split_threshold * leafSAH) {
    aligned_space = unaligned_heuristic.compute_aligned_space(range, &references[0]);
    unaligned_range = BVHObjectBinning(
        range, &references[0], &unaligned_heuristic, &aligned_space);
    unalignedSplitSAH = params.sah_node_cost * unaligned_range.unaligned_bounds().half_area() +
                        params.sah_primitive_cost * unaligned_range.splitSAH;
    unalignedLeafSAH = params.sah_primitive_cost * unaligned_range.leafSAH;
    if (!(range.size() > 0 && params.top_level && level == 0)) {
      if (unalignedLeafSAH < unalignedSplitSAH && unalignedSplitSAH < splitSAH &&
          range_within_max_leaf_size(range, references)) {
        return create_leaf_node(range, references);
      }
    }
    /* Check whether unaligned split is better than the regular one. */
    if (unalignedSplitSAH < splitSAH) {
      do_unalinged_split = true;
    }
  }

  /* Perform split. */
  BVHObjectBinning left, right;
  if (do_unalinged_split) {
    unaligned_range.split(&references[0], left, right);
  }
  else {
    range.split(&references[0], left, right);
  }

  BoundBox bounds;
  if (do_unalinged_split) {
    bounds = unaligned_heuristic.compute_aligned_boundbox(range, &references[0], aligned_space);
  }
  else {
    bounds = range.bounds();
  }

  /* Create inner node. */
  InnerNode *inner;
  if (range.size() < THREAD_TASK_SIZE) {
    /* local build */
    BVHNode *leftnode = build_node(left, level + 1);
    BVHNode *rightnode = build_node(right, level + 1);

    inner = new InnerNode(bounds, leftnode, rightnode);
  }
  else {
    /* Threaded build */
    inner = new InnerNode(bounds);

    task_pool.push([=] { thread_build_node(inner, 0, left, level + 1); });
    task_pool.push([=] { thread_build_node(inner, 1, right, level + 1); });
  }

  if (do_unalinged_split) {
    inner->set_aligned_space(aligned_space);
  }

  return inner;
}

/* multithreaded spatial split builder */
BVHNode *BVHBuild::build_node(const BVHRange &range,
                              vector<BVHReference> &references,
                              int level,
                              BVHSpatialStorage *storage)
{
  /* Update progress.
   *
   * TODO(sergey): Currently it matches old behavior, but we can move it to the
   * task thread (which will mimic non=split builder) and save some CPU ticks
   * on checking cancel status.
   */
  progress_update();
  if (progress.get_cancel()) {
    return NULL;
  }

  /* Small enough or too deep => create leaf. */
  if (!(range.size() > 0 && params.top_level && level == 0)) {
    if (params.small_enough_for_leaf(range.size(), level)) {
      progress_count += range.size();
      return create_leaf_node(range, references);
    }
  }

  /* Perform splitting test. */
  BVHMixedSplit split(this, storage, range, references, level);

  if (!(range.size() > 0 && params.top_level && level == 0)) {
    if (split.no_split) {
      progress_count += range.size();
      return create_leaf_node(range, references);
    }
  }
  float leafSAH = params.sah_primitive_cost * split.leafSAH;
  float splitSAH = params.sah_node_cost * range.bounds().half_area() +
                   params.sah_primitive_cost * split.nodeSAH;

  BVHMixedSplit unaligned_split;
  float unalignedSplitSAH = FLT_MAX;
  /* float unalignedLeafSAH = FLT_MAX; */
  Transform aligned_space;
  bool do_unalinged_split = false;
  if (params.use_unaligned_nodes && splitSAH > params.unaligned_split_threshold * leafSAH) {
    aligned_space = unaligned_heuristic.compute_aligned_space(range, &references.at(0));
    unaligned_split = BVHMixedSplit(
        this, storage, range, references, level, &unaligned_heuristic, &aligned_space);
    /* unalignedLeafSAH = params.sah_primitive_cost * split.leafSAH; */
    unalignedSplitSAH = params.sah_node_cost * unaligned_split.bounds.half_area() +
                        params.sah_primitive_cost * unaligned_split.nodeSAH;
    /* TODO(sergey): Check we can create leaf already. */
    /* Check whether unaligned split is better than the regular one. */
    if (unalignedSplitSAH < splitSAH) {
      do_unalinged_split = true;
    }
  }

  /* Do split. */
  BVHRange left, right;
  if (do_unalinged_split) {
    unaligned_split.split(this, left, right, range);
  }
  else {
    split.split(this, left, right, range);
  }

  progress_total += left.size() + right.size() - range.size();

  BoundBox bounds;
  if (do_unalinged_split) {
    bounds = unaligned_heuristic.compute_aligned_boundbox(range, &references.at(0), aligned_space);
  }
  else {
    bounds = range.bounds();
  }

  /* Create inner node. */
  InnerNode *inner;
  if (range.size() < THREAD_TASK_SIZE) {
    /* Local build. */

    /* Build left node. */
    vector<BVHReference> right_references(references.begin() + right.start(),
                                          references.begin() + right.end());
    right.set_start(0);

    BVHNode *leftnode = build_node(left, references, level + 1, storage);

    /* Build right node. */
    BVHNode *rightnode = build_node(right, right_references, level + 1, storage);

    inner = new InnerNode(bounds, leftnode, rightnode);
  }
  else {
    /* Threaded build. */
    inner = new InnerNode(bounds);

    vector<BVHReference> left_references(references.begin() + left.start(),
                                         references.begin() + left.end());
    vector<BVHReference> right_references(references.begin() + right.start(),
                                          references.begin() + right.end());
    right.set_start(0);

    /* Create tasks for left and right nodes, using copy for most arguments and
     * move for reference to avoid memory copies. */
    task_pool.push([=, refs = std::move(left_references)]() mutable {
      thread_build_spatial_split_node(inner, 0, left, refs, level + 1);
    });
    task_pool.push([=, refs = std::move(right_references)]() mutable {
      thread_build_spatial_split_node(inner, 1, right, refs, level + 1);
    });
  }

  if (do_unalinged_split) {
    inner->set_aligned_space(aligned_space);
  }

  return inner;
}

/* Create Nodes */

BVHNode *BVHBuild::create_object_leaf_nodes(const BVHReference *ref, int start, int num)
{
  if (num == 0) {
    BoundBox bounds = BoundBox::empty;
    return new LeafNode(bounds, 0, 0, 0);
  }
  else if (num == 1) {
    assert(start < prim_type.size());
    prim_type[start] = ref->prim_type();
    prim_index[start] = ref->prim_index();
    prim_object[start] = ref->prim_object();
    if (need_prim_time) {
      prim_time[start] = make_float2(ref->time_from(), ref->time_to());
    }

    const uint visibility = objects[ref->prim_object()]->visibility_for_tracing();
    BVHNode *leaf_node = new LeafNode(ref->bounds(), visibility, start, start + 1);
    leaf_node->time_from = ref->time_from();
    leaf_node->time_to = ref->time_to();
    return leaf_node;
  }
  else {
    int mid = num / 2;
    BVHNode *leaf0 = create_object_leaf_nodes(ref, start, mid);
    BVHNode *leaf1 = create_object_leaf_nodes(ref + mid, start + mid, num - mid);

    BoundBox bounds = BoundBox::empty;
    bounds.grow(leaf0->bounds);
    bounds.grow(leaf1->bounds);

    BVHNode *inner_node = new InnerNode(bounds, leaf0, leaf1);
    inner_node->time_from = min(leaf0->time_from, leaf1->time_from);
    inner_node->time_to = max(leaf0->time_to, leaf1->time_to);
    return inner_node;
  }
}

BVHNode *BVHBuild::create_leaf_node(const BVHRange &range, const vector<BVHReference> &references)
{
  /* This is a bit over-allocating here (considering leaf size into account),
   * but chunk-based re-allocation in vector makes it difficult to use small
   * size of stack storage here. Some tweaks are possible tho.
   *
   * NOTES:
   *  - If the size is too big, we'll have inefficient stack usage,
   *    and lots of cache misses.
   *  - If the size is too small, then we can run out of memory
   *    allowed to be used by vector.
   *    In practice it wouldn't mean crash, just allocator will fallback
   *    to heap which is slower.
   *  - Optimistic re-allocation in STL could jump us out of stack usage
   *    because re-allocation happens in chunks and size of those chunks we
   *    can not control.
   */
  typedef StackAllocator<256, int> LeafStackAllocator;
  typedef StackAllocator<256, float2> LeafTimeStackAllocator;
  typedef StackAllocator<256, BVHReference> LeafReferenceStackAllocator;

  vector<int, LeafStackAllocator> p_type[PRIMITIVE_NUM];
  vector<int, LeafStackAllocator> p_index[PRIMITIVE_NUM];
  vector<int, LeafStackAllocator> p_object[PRIMITIVE_NUM];
  vector<float2, LeafTimeStackAllocator> p_time[PRIMITIVE_NUM];
  vector<BVHReference, LeafReferenceStackAllocator> p_ref[PRIMITIVE_NUM];

  /* TODO(sergey): In theory we should be able to store references. */
  vector<BVHReference, LeafReferenceStackAllocator> object_references;

  uint visibility[PRIMITIVE_NUM] = {0};
  /* NOTE: Keep initialization in sync with actual number of primitives. */
  BoundBox bounds[PRIMITIVE_NUM] = {
      BoundBox::empty, BoundBox::empty, BoundBox::empty, BoundBox::empty};
  int ob_num = 0;
  int num_new_prims = 0;
  /* Fill in per-type type/index array. */
  for (int i = 0; i < range.size(); i++) {
    const BVHReference &ref = references[range.start() + i];
    if (ref.prim_index() != -1) {
      uint32_t type_index = PRIMITIVE_INDEX(ref.prim_type() & PRIMITIVE_ALL);
      p_ref[type_index].push_back(ref);
      p_type[type_index].push_back(ref.prim_type());
      p_index[type_index].push_back(ref.prim_index());
      p_object[type_index].push_back(ref.prim_object());
      p_time[type_index].push_back(make_float2(ref.time_from(), ref.time_to()));

      bounds[type_index].grow(ref.bounds());
      visibility[type_index] |= objects[ref.prim_object()]->visibility_for_tracing();
      ++num_new_prims;
    }
    else {
      object_references.push_back(ref);
      ++ob_num;
    }
  }

  /* Create leaf nodes for every existing primitive.
   *
   * Here we write primitive types, indices and objects to a temporary array.
   * This way we keep all the heavy memory allocation code outside of the
   * thread lock in the case of spatial split building.
   *
   * TODO(sergey): With some pointer trickery we can write directly to the
   * destination buffers for the non-spatial split BVH.
   */
  BVHNode *leaves[PRIMITIVE_NUM + 1] = {NULL};
  int num_leaves = 0;
  size_t start_index = 0;
  vector<int, LeafStackAllocator> local_prim_type, local_prim_index, local_prim_object;
  vector<float2, LeafTimeStackAllocator> local_prim_time;
  local_prim_type.resize(num_new_prims);
  local_prim_index.resize(num_new_prims);
  local_prim_object.resize(num_new_prims);
  if (need_prim_time) {
    local_prim_time.resize(num_new_prims);
  }
  for (int i = 0; i < PRIMITIVE_NUM; ++i) {
    int num = (int)p_type[i].size();
    if (num != 0) {
      assert(p_type[i].size() == p_index[i].size());
      assert(p_type[i].size() == p_object[i].size());
      Transform aligned_space;
      bool alignment_found = false;
      for (int j = 0; j < num; ++j) {
        const int index = start_index + j;
        local_prim_type[index] = p_type[i][j];
        local_prim_index[index] = p_index[i][j];
        local_prim_object[index] = p_object[i][j];
        if (need_prim_time) {
          local_prim_time[index] = p_time[i][j];
        }
        if (params.use_unaligned_nodes && !alignment_found) {
          alignment_found = unaligned_heuristic.compute_aligned_space(p_ref[i][j], &aligned_space);
        }
      }
      LeafNode *leaf_node = new LeafNode(bounds[i], visibility[i], start_index, start_index + num);
      if (true) {
        float time_from = 1.0f, time_to = 0.0f;
        for (int j = 0; j < num; ++j) {
          const BVHReference &ref = p_ref[i][j];
          time_from = min(time_from, ref.time_from());
          time_to = max(time_to, ref.time_to());
        }
        leaf_node->time_from = time_from;
        leaf_node->time_to = time_to;
      }
      if (alignment_found) {
        /* Need to recalculate leaf bounds with new alignment. */
        leaf_node->bounds = BoundBox::empty;
        for (int j = 0; j < num; ++j) {
          const BVHReference &ref = p_ref[i][j];
          BoundBox ref_bounds = unaligned_heuristic.compute_aligned_prim_boundbox(ref,
                                                                                  aligned_space);
          leaf_node->bounds.grow(ref_bounds);
        }
        /* Set alignment space. */
        leaf_node->set_aligned_space(aligned_space);
      }
      leaves[num_leaves++] = leaf_node;
      start_index += num;
    }
  }
  /* Get size of new data to be copied to the packed arrays. */
  const int num_new_leaf_data = start_index;
  const size_t new_leaf_data_size = sizeof(int) * num_new_leaf_data;
  /* Copy actual data to the packed array. */
  if (params.use_spatial_split) {
    spatial_spin_lock.lock();
    /* We use first free index in the packed arrays and mode pointer to the
     * end of the current range.
     *
     * This doesn't give deterministic packed arrays, but it shouldn't really
     * matter because order of children in BVH is deterministic.
     */
    start_index = spatial_free_index;
    spatial_free_index += range.size();
    /* Extend an array when needed. */
    const size_t range_end = start_index + range.size();
    if (prim_type.size() < range_end) {
      /* Avoid extra re-allocations by pre-allocating bigger array in an
       * advance.
       */
      if (range_end >= prim_type.capacity()) {
        float progress = (float)progress_count / (float)progress_total;
        float factor = (1.0f - progress);
        const size_t reserve = (size_t)(range_end + (float)range_end * factor);
        prim_type.reserve(reserve);
        prim_index.reserve(reserve);
        prim_object.reserve(reserve);
        if (need_prim_time) {
          prim_time.reserve(reserve);
        }
      }

      prim_type.resize(range_end);
      prim_index.resize(range_end);
      prim_object.resize(range_end);
      if (need_prim_time) {
        prim_time.resize(range_end);
      }
    }
    /* Perform actual data copy. */
    if (new_leaf_data_size > 0) {
      memcpy(&prim_type[start_index], &local_prim_type[0], new_leaf_data_size);
      memcpy(&prim_index[start_index], &local_prim_index[0], new_leaf_data_size);
      memcpy(&prim_object[start_index], &local_prim_object[0], new_leaf_data_size);
      if (need_prim_time) {
        memcpy(&prim_time[start_index], &local_prim_time[0], sizeof(float2) * num_new_leaf_data);
      }
    }
    spatial_spin_lock.unlock();
  }
  else {
    /* For the regular BVH builder we simply copy new data starting at the
     * range start. This is totally thread-safe, all threads are living
     * inside of their own range.
     */
    start_index = range.start();
    if (new_leaf_data_size > 0) {
      memcpy(&prim_type[start_index], &local_prim_type[0], new_leaf_data_size);
      memcpy(&prim_index[start_index], &local_prim_index[0], new_leaf_data_size);
      memcpy(&prim_object[start_index], &local_prim_object[0], new_leaf_data_size);
      if (need_prim_time) {
        memcpy(&prim_time[start_index], &local_prim_time[0], sizeof(float2) * num_new_leaf_data);
      }
    }
  }

  /* So far leaves were created with the zero-based index in an arrays,
   * here we modify the indices to correspond to actual packed array start
   * index.
   */
  for (int i = 0; i < num_leaves; ++i) {
    LeafNode *leaf = (LeafNode *)leaves[i];
    leaf->lo += start_index;
    leaf->hi += start_index;
  }

  /* Create leaf node for object. */
  if (num_leaves == 0 || ob_num) {
    /* Only create object leaf nodes if there are objects or no other
     * nodes created.
     */
    const BVHReference *ref = (ob_num) ? &object_references[0] : NULL;
    leaves[num_leaves] = create_object_leaf_nodes(ref, start_index + num_new_leaf_data, ob_num);
    ++num_leaves;
  }

  /* TODO(sergey): Need to take care of alignment when number of leaves
   * is more than 1.
   */
  if (num_leaves == 1) {
    /* Simplest case: single leaf, just return it.
     * In all the rest cases we'll be creating intermediate inner node with
     * an appropriate bounding box.
     */
    return leaves[0];
  }
  else if (num_leaves == 2) {
    return new InnerNode(range.bounds(), leaves[0], leaves[1]);
  }
  else if (num_leaves == 3) {
    BoundBox inner_bounds = merge(leaves[1]->bounds, leaves[2]->bounds);
    BVHNode *inner = new InnerNode(inner_bounds, leaves[1], leaves[2]);
    return new InnerNode(range.bounds(), leaves[0], inner);
  }
  else {
    /* Should be doing more branches if more primitive types added. */
    assert(num_leaves <= 5);
    BoundBox inner_bounds_a = merge(leaves[0]->bounds, leaves[1]->bounds);
    BoundBox inner_bounds_b = merge(leaves[2]->bounds, leaves[3]->bounds);
    BVHNode *inner_a = new InnerNode(inner_bounds_a, leaves[0], leaves[1]);
    BVHNode *inner_b = new InnerNode(inner_bounds_b, leaves[2], leaves[3]);
    BoundBox inner_bounds_c = merge(inner_a->bounds, inner_b->bounds);
    BVHNode *inner_c = new InnerNode(inner_bounds_c, inner_a, inner_b);
    if (num_leaves == 5) {
      return new InnerNode(range.bounds(), inner_c, leaves[4]);
    }
    return inner_c;
  }

#undef MAX_ITEMS_PER_LEAF
}

/* Tree Rotations */

void BVHBuild::rotate(BVHNode *node, int max_depth, int iterations)
{
  /* in tested scenes, this resulted in slightly slower raytracing, so disabled
   * it for now. could be implementation bug, or depend on the scene */
  if (node)
    for (int i = 0; i < iterations; i++)
      rotate(node, max_depth);
}

void BVHBuild::rotate(BVHNode *node, int max_depth)
{
  /* nothing to rotate if we reached a leaf node. */
  if (node->is_leaf() || max_depth < 0)
    return;

  InnerNode *parent = (InnerNode *)node;

  /* rotate all children first */
  for (size_t c = 0; c < 2; c++)
    rotate(parent->children[c], max_depth - 1);

  /* compute current area of all children */
  BoundBox bounds0 = parent->children[0]->bounds;
  BoundBox bounds1 = parent->children[1]->bounds;

  float area0 = bounds0.half_area();
  float area1 = bounds1.half_area();
  float4 child_area = make_float4(area0, area1, 0.0f, 0.0f);

  /* find best rotation. we pick a target child of a first child, and swap
   * this with an other child. we perform the best such swap. */
  float best_cost = FLT_MAX;
  int best_child = -1, best_target = -1, best_other = -1;

  for (size_t c = 0; c < 2; c++) {
    /* ignore leaf nodes as we cannot descent into */
    if (parent->children[c]->is_leaf())
      continue;

    InnerNode *child = (InnerNode *)parent->children[c];
    BoundBox &other = (c == 0) ? bounds1 : bounds0;

    /* transpose child bounds */
    BoundBox target0 = child->children[0]->bounds;
    BoundBox target1 = child->children[1]->bounds;

    /* compute cost for both possible swaps */
    float cost0 = merge(other, target1).half_area() - child_area[c];
    float cost1 = merge(target0, other).half_area() - child_area[c];

    if (min(cost0, cost1) < best_cost) {
      best_child = (int)c;
      best_other = (int)(1 - c);

      if (cost0 < cost1) {
        best_cost = cost0;
        best_target = 0;
      }
      else {
        best_cost = cost0;
        best_target = 1;
      }
    }
  }

  /* if we did not find a swap that improves the SAH then do nothing */
  if (best_cost >= 0)
    return;

  assert(best_child == 0 || best_child == 1);
  assert(best_target != -1);

  /* perform the best found tree rotation */
  InnerNode *child = (InnerNode *)parent->children[best_child];

  swap(parent->children[best_other], child->children[best_target]);
  child->bounds = merge(child->children[0]->bounds, child->children[1]->bounds);
}

CCL_NAMESPACE_END