Welcome to mirror list, hosted at ThFree Co, Russian Federation.

bvh2.cpp « bvh « cycles « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 042906021457692b9d4af806cb8956db98ef886a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
/*
 * Adapted from code copyright 2009-2010 NVIDIA Corporation
 * Modifications Copyright 2011, Blender Foundation.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "bvh/bvh2.h"

#include "scene/hair.h"
#include "scene/mesh.h"
#include "scene/object.h"

#include "bvh/build.h"
#include "bvh/node.h"
#include "bvh/unaligned.h"

#include "util/foreach.h"
#include "util/progress.h"

CCL_NAMESPACE_BEGIN

BVHStackEntry::BVHStackEntry(const BVHNode *n, int i) : node(n), idx(i)
{
}

int BVHStackEntry::encodeIdx() const
{
  return (node->is_leaf()) ? ~idx : idx;
}

BVH2::BVH2(const BVHParams &params_,
           const vector<Geometry *> &geometry_,
           const vector<Object *> &objects_)
    : BVH(params_, geometry_, objects_)
{
}

void BVH2::build(Progress &progress, Stats *)
{
  progress.set_substatus("Building BVH");

  /* build nodes */
  BVHBuild bvh_build(objects,
                     pack.prim_type,
                     pack.prim_index,
                     pack.prim_object,
                     pack.prim_time,
                     params,
                     progress);
  BVHNode *bvh2_root = bvh_build.run();

  if (progress.get_cancel()) {
    if (bvh2_root != NULL) {
      bvh2_root->deleteSubtree();
    }
    return;
  }

  /* BVH builder returns tree in a binary mode (with two children per inner
   * node. Need to adopt that for a wider BVH implementations. */
  BVHNode *root = widen_children_nodes(bvh2_root);
  if (root != bvh2_root) {
    bvh2_root->deleteSubtree();
  }

  if (progress.get_cancel()) {
    if (root != NULL) {
      root->deleteSubtree();
    }
    return;
  }

  /* pack triangles */
  progress.set_substatus("Packing BVH triangles and strands");
  pack_primitives();

  if (progress.get_cancel()) {
    root->deleteSubtree();
    return;
  }

  /* pack nodes */
  progress.set_substatus("Packing BVH nodes");
  pack_nodes(root);

  /* free build nodes */
  root->deleteSubtree();
}

void BVH2::refit(Progress &progress)
{
  progress.set_substatus("Packing BVH primitives");
  pack_primitives();

  if (progress.get_cancel())
    return;

  progress.set_substatus("Refitting BVH nodes");
  refit_nodes();
}

BVHNode *BVH2::widen_children_nodes(const BVHNode *root)
{
  return const_cast<BVHNode *>(root);
}

void BVH2::pack_leaf(const BVHStackEntry &e, const LeafNode *leaf)
{
  assert(e.idx + BVH_NODE_LEAF_SIZE <= pack.leaf_nodes.size());
  float4 data[BVH_NODE_LEAF_SIZE];
  memset(data, 0, sizeof(data));
  if (leaf->num_triangles() == 1 && pack.prim_index[leaf->lo] == -1) {
    /* object */
    data[0].x = __int_as_float(~(leaf->lo));
    data[0].y = __int_as_float(0);
  }
  else {
    /* triangle */
    data[0].x = __int_as_float(leaf->lo);
    data[0].y = __int_as_float(leaf->hi);
  }
  data[0].z = __uint_as_float(leaf->visibility);
  if (leaf->num_triangles() != 0) {
    data[0].w = __uint_as_float(pack.prim_type[leaf->lo]);
  }

  memcpy(&pack.leaf_nodes[e.idx], data, sizeof(float4) * BVH_NODE_LEAF_SIZE);
}

void BVH2::pack_inner(const BVHStackEntry &e, const BVHStackEntry &e0, const BVHStackEntry &e1)
{
  if (e0.node->is_unaligned || e1.node->is_unaligned) {
    pack_unaligned_inner(e, e0, e1);
  }
  else {
    pack_aligned_inner(e, e0, e1);
  }
}

void BVH2::pack_aligned_inner(const BVHStackEntry &e,
                              const BVHStackEntry &e0,
                              const BVHStackEntry &e1)
{
  pack_aligned_node(e.idx,
                    e0.node->bounds,
                    e1.node->bounds,
                    e0.encodeIdx(),
                    e1.encodeIdx(),
                    e0.node->visibility,
                    e1.node->visibility);
}

void BVH2::pack_aligned_node(int idx,
                             const BoundBox &b0,
                             const BoundBox &b1,
                             int c0,
                             int c1,
                             uint visibility0,
                             uint visibility1)
{
  assert(idx + BVH_NODE_SIZE <= pack.nodes.size());
  assert(c0 < 0 || c0 < pack.nodes.size());
  assert(c1 < 0 || c1 < pack.nodes.size());

  int4 data[BVH_NODE_SIZE] = {
      make_int4(
          visibility0 & ~PATH_RAY_NODE_UNALIGNED, visibility1 & ~PATH_RAY_NODE_UNALIGNED, c0, c1),
      make_int4(__float_as_int(b0.min.x),
                __float_as_int(b1.min.x),
                __float_as_int(b0.max.x),
                __float_as_int(b1.max.x)),
      make_int4(__float_as_int(b0.min.y),
                __float_as_int(b1.min.y),
                __float_as_int(b0.max.y),
                __float_as_int(b1.max.y)),
      make_int4(__float_as_int(b0.min.z),
                __float_as_int(b1.min.z),
                __float_as_int(b0.max.z),
                __float_as_int(b1.max.z)),
  };

  memcpy(&pack.nodes[idx], data, sizeof(int4) * BVH_NODE_SIZE);
}

void BVH2::pack_unaligned_inner(const BVHStackEntry &e,
                                const BVHStackEntry &e0,
                                const BVHStackEntry &e1)
{
  pack_unaligned_node(e.idx,
                      e0.node->get_aligned_space(),
                      e1.node->get_aligned_space(),
                      e0.node->bounds,
                      e1.node->bounds,
                      e0.encodeIdx(),
                      e1.encodeIdx(),
                      e0.node->visibility,
                      e1.node->visibility);
}

void BVH2::pack_unaligned_node(int idx,
                               const Transform &aligned_space0,
                               const Transform &aligned_space1,
                               const BoundBox &bounds0,
                               const BoundBox &bounds1,
                               int c0,
                               int c1,
                               uint visibility0,
                               uint visibility1)
{
  assert(idx + BVH_UNALIGNED_NODE_SIZE <= pack.nodes.size());
  assert(c0 < 0 || c0 < pack.nodes.size());
  assert(c1 < 0 || c1 < pack.nodes.size());

  float4 data[BVH_UNALIGNED_NODE_SIZE];
  Transform space0 = BVHUnaligned::compute_node_transform(bounds0, aligned_space0);
  Transform space1 = BVHUnaligned::compute_node_transform(bounds1, aligned_space1);
  data[0] = make_float4(__int_as_float(visibility0 | PATH_RAY_NODE_UNALIGNED),
                        __int_as_float(visibility1 | PATH_RAY_NODE_UNALIGNED),
                        __int_as_float(c0),
                        __int_as_float(c1));

  data[1] = space0.x;
  data[2] = space0.y;
  data[3] = space0.z;
  data[4] = space1.x;
  data[5] = space1.y;
  data[6] = space1.z;

  memcpy(&pack.nodes[idx], data, sizeof(float4) * BVH_UNALIGNED_NODE_SIZE);
}

void BVH2::pack_nodes(const BVHNode *root)
{
  const size_t num_nodes = root->getSubtreeSize(BVH_STAT_NODE_COUNT);
  const size_t num_leaf_nodes = root->getSubtreeSize(BVH_STAT_LEAF_COUNT);
  assert(num_leaf_nodes <= num_nodes);
  const size_t num_inner_nodes = num_nodes - num_leaf_nodes;
  size_t node_size;
  if (params.use_unaligned_nodes) {
    const size_t num_unaligned_nodes = root->getSubtreeSize(BVH_STAT_UNALIGNED_INNER_COUNT);
    node_size = (num_unaligned_nodes * BVH_UNALIGNED_NODE_SIZE) +
                (num_inner_nodes - num_unaligned_nodes) * BVH_NODE_SIZE;
  }
  else {
    node_size = num_inner_nodes * BVH_NODE_SIZE;
  }
  /* Resize arrays */
  pack.nodes.clear();
  pack.leaf_nodes.clear();
  /* For top level BVH, first merge existing BVH's so we know the offsets. */
  if (params.top_level) {
    pack_instances(node_size, num_leaf_nodes * BVH_NODE_LEAF_SIZE);
  }
  else {
    pack.nodes.resize(node_size);
    pack.leaf_nodes.resize(num_leaf_nodes * BVH_NODE_LEAF_SIZE);
  }

  int nextNodeIdx = 0, nextLeafNodeIdx = 0;

  vector<BVHStackEntry> stack;
  stack.reserve(BVHParams::MAX_DEPTH * 2);
  if (root->is_leaf()) {
    stack.push_back(BVHStackEntry(root, nextLeafNodeIdx++));
  }
  else {
    stack.push_back(BVHStackEntry(root, nextNodeIdx));
    nextNodeIdx += root->has_unaligned() ? BVH_UNALIGNED_NODE_SIZE : BVH_NODE_SIZE;
  }

  while (stack.size()) {
    BVHStackEntry e = stack.back();
    stack.pop_back();

    if (e.node->is_leaf()) {
      /* leaf node */
      const LeafNode *leaf = reinterpret_cast<const LeafNode *>(e.node);
      pack_leaf(e, leaf);
    }
    else {
      /* inner node */
      int idx[2];
      for (int i = 0; i < 2; ++i) {
        if (e.node->get_child(i)->is_leaf()) {
          idx[i] = nextLeafNodeIdx++;
        }
        else {
          idx[i] = nextNodeIdx;
          nextNodeIdx += e.node->get_child(i)->has_unaligned() ? BVH_UNALIGNED_NODE_SIZE :
                                                                 BVH_NODE_SIZE;
        }
      }

      stack.push_back(BVHStackEntry(e.node->get_child(0), idx[0]));
      stack.push_back(BVHStackEntry(e.node->get_child(1), idx[1]));

      pack_inner(e, stack[stack.size() - 2], stack[stack.size() - 1]);
    }
  }
  assert(node_size == nextNodeIdx);
  /* root index to start traversal at, to handle case of single leaf node */
  pack.root_index = (root->is_leaf()) ? -1 : 0;
}

void BVH2::refit_nodes()
{
  assert(!params.top_level);

  BoundBox bbox = BoundBox::empty;
  uint visibility = 0;
  refit_node(0, (pack.root_index == -1) ? true : false, bbox, visibility);
}

void BVH2::refit_node(int idx, bool leaf, BoundBox &bbox, uint &visibility)
{
  if (leaf) {
    /* refit leaf node */
    assert(idx + BVH_NODE_LEAF_SIZE <= pack.leaf_nodes.size());
    const int4 *data = &pack.leaf_nodes[idx];
    const int c0 = data[0].x;
    const int c1 = data[0].y;

    refit_primitives(c0, c1, bbox, visibility);

    /* TODO(sergey): De-duplicate with pack_leaf(). */
    float4 leaf_data[BVH_NODE_LEAF_SIZE];
    leaf_data[0].x = __int_as_float(c0);
    leaf_data[0].y = __int_as_float(c1);
    leaf_data[0].z = __uint_as_float(visibility);
    leaf_data[0].w = __uint_as_float(data[0].w);
    memcpy(&pack.leaf_nodes[idx], leaf_data, sizeof(float4) * BVH_NODE_LEAF_SIZE);
  }
  else {
    assert(idx + BVH_NODE_SIZE <= pack.nodes.size());

    const int4 *data = &pack.nodes[idx];
    const bool is_unaligned = (data[0].x & PATH_RAY_NODE_UNALIGNED) != 0;
    const int c0 = data[0].z;
    const int c1 = data[0].w;
    /* refit inner node, set bbox from children */
    BoundBox bbox0 = BoundBox::empty, bbox1 = BoundBox::empty;
    uint visibility0 = 0, visibility1 = 0;

    refit_node((c0 < 0) ? -c0 - 1 : c0, (c0 < 0), bbox0, visibility0);
    refit_node((c1 < 0) ? -c1 - 1 : c1, (c1 < 0), bbox1, visibility1);

    if (is_unaligned) {
      Transform aligned_space = transform_identity();
      pack_unaligned_node(
          idx, aligned_space, aligned_space, bbox0, bbox1, c0, c1, visibility0, visibility1);
    }
    else {
      pack_aligned_node(idx, bbox0, bbox1, c0, c1, visibility0, visibility1);
    }

    bbox.grow(bbox0);
    bbox.grow(bbox1);
    visibility = visibility0 | visibility1;
  }
}

/* Refitting */

void BVH2::refit_primitives(int start, int end, BoundBox &bbox, uint &visibility)
{
  /* Refit range of primitives. */
  for (int prim = start; prim < end; prim++) {
    int pidx = pack.prim_index[prim];
    int tob = pack.prim_object[prim];
    Object *ob = objects[tob];

    if (pidx == -1) {
      /* Object instance. */
      bbox.grow(ob->bounds);
    }
    else {
      /* Primitives. */
      if (pack.prim_type[prim] & PRIMITIVE_ALL_CURVE) {
        /* Curves. */
        const Hair *hair = static_cast<const Hair *>(ob->get_geometry());
        int prim_offset = (params.top_level) ? hair->prim_offset : 0;
        Hair::Curve curve = hair->get_curve(pidx - prim_offset);
        int k = PRIMITIVE_UNPACK_SEGMENT(pack.prim_type[prim]);

        curve.bounds_grow(k, &hair->get_curve_keys()[0], &hair->get_curve_radius()[0], bbox);

        /* Motion curves. */
        if (hair->get_use_motion_blur()) {
          Attribute *attr = hair->attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);

          if (attr) {
            size_t hair_size = hair->get_curve_keys().size();
            size_t steps = hair->get_motion_steps() - 1;
            float3 *key_steps = attr->data_float3();

            for (size_t i = 0; i < steps; i++)
              curve.bounds_grow(k, key_steps + i * hair_size, &hair->get_curve_radius()[0], bbox);
          }
        }
      }
      else {
        /* Triangles. */
        const Mesh *mesh = static_cast<const Mesh *>(ob->get_geometry());
        int prim_offset = (params.top_level) ? mesh->prim_offset : 0;
        Mesh::Triangle triangle = mesh->get_triangle(pidx - prim_offset);
        const float3 *vpos = &mesh->verts[0];

        triangle.bounds_grow(vpos, bbox);

        /* Motion triangles. */
        if (mesh->use_motion_blur) {
          Attribute *attr = mesh->attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);

          if (attr) {
            size_t mesh_size = mesh->verts.size();
            size_t steps = mesh->motion_steps - 1;
            float3 *vert_steps = attr->data_float3();

            for (size_t i = 0; i < steps; i++)
              triangle.bounds_grow(vert_steps + i * mesh_size, bbox);
          }
        }
      }
    }
    visibility |= ob->visibility_for_tracing();
  }
}

/* Triangles */

void BVH2::pack_primitives()
{
  const size_t tidx_size = pack.prim_index.size();
  /* Reserve size for arrays. */
  pack.prim_visibility.clear();
  pack.prim_visibility.resize(tidx_size);
  /* Fill in all the arrays. */
  for (unsigned int i = 0; i < tidx_size; i++) {
    if (pack.prim_index[i] != -1) {
      int tob = pack.prim_object[i];
      Object *ob = objects[tob];
      pack.prim_visibility[i] = ob->visibility_for_tracing();
    }
    else {
      pack.prim_visibility[i] = 0;
    }
  }
}

/* Pack Instances */

void BVH2::pack_instances(size_t nodes_size, size_t leaf_nodes_size)
{
  /* Adjust primitive index to point to the triangle in the global array, for
   * geometry with transform applied and already in the top level BVH.
   */
  for (size_t i = 0; i < pack.prim_index.size(); i++) {
    if (pack.prim_index[i] != -1) {
      pack.prim_index[i] += objects[pack.prim_object[i]]->get_geometry()->prim_offset;
    }
  }

  /* track offsets of instanced BVH data in global array */
  size_t prim_offset = pack.prim_index.size();
  size_t nodes_offset = nodes_size;
  size_t nodes_leaf_offset = leaf_nodes_size;

  /* clear array that gives the node indexes for instanced objects */
  pack.object_node.clear();

  /* reserve */
  size_t prim_index_size = pack.prim_index.size();

  size_t pack_prim_index_offset = prim_index_size;
  size_t pack_nodes_offset = nodes_size;
  size_t pack_leaf_nodes_offset = leaf_nodes_size;
  size_t object_offset = 0;

  foreach (Geometry *geom, geometry) {
    BVH2 *bvh = static_cast<BVH2 *>(geom->bvh);

    if (geom->need_build_bvh(params.bvh_layout)) {
      prim_index_size += bvh->pack.prim_index.size();
      nodes_size += bvh->pack.nodes.size();
      leaf_nodes_size += bvh->pack.leaf_nodes.size();
    }
  }

  pack.prim_index.resize(prim_index_size);
  pack.prim_type.resize(prim_index_size);
  pack.prim_object.resize(prim_index_size);
  pack.prim_visibility.resize(prim_index_size);
  pack.nodes.resize(nodes_size);
  pack.leaf_nodes.resize(leaf_nodes_size);
  pack.object_node.resize(objects.size());

  if (params.num_motion_curve_steps > 0 || params.num_motion_triangle_steps > 0) {
    pack.prim_time.resize(prim_index_size);
  }

  int *pack_prim_index = (pack.prim_index.size()) ? &pack.prim_index[0] : NULL;
  int *pack_prim_type = (pack.prim_type.size()) ? &pack.prim_type[0] : NULL;
  int *pack_prim_object = (pack.prim_object.size()) ? &pack.prim_object[0] : NULL;
  uint *pack_prim_visibility = (pack.prim_visibility.size()) ? &pack.prim_visibility[0] : NULL;
  int4 *pack_nodes = (pack.nodes.size()) ? &pack.nodes[0] : NULL;
  int4 *pack_leaf_nodes = (pack.leaf_nodes.size()) ? &pack.leaf_nodes[0] : NULL;
  float2 *pack_prim_time = (pack.prim_time.size()) ? &pack.prim_time[0] : NULL;

  unordered_map<Geometry *, int> geometry_map;

  /* merge */
  foreach (Object *ob, objects) {
    Geometry *geom = ob->get_geometry();

    /* We assume that if mesh doesn't need own BVH it was already included
     * into a top-level BVH and no packing here is needed.
     */
    if (!geom->need_build_bvh(params.bvh_layout)) {
      pack.object_node[object_offset++] = 0;
      continue;
    }

    /* if mesh already added once, don't add it again, but used set
     * node offset for this object */
    unordered_map<Geometry *, int>::iterator it = geometry_map.find(geom);

    if (geometry_map.find(geom) != geometry_map.end()) {
      int noffset = it->second;
      pack.object_node[object_offset++] = noffset;
      continue;
    }

    BVH2 *bvh = static_cast<BVH2 *>(geom->bvh);

    int noffset = nodes_offset;
    int noffset_leaf = nodes_leaf_offset;
    int geom_prim_offset = geom->prim_offset;

    /* fill in node indexes for instances */
    if (bvh->pack.root_index == -1)
      pack.object_node[object_offset++] = -noffset_leaf - 1;
    else
      pack.object_node[object_offset++] = noffset;

    geometry_map[geom] = pack.object_node[object_offset - 1];

    /* merge primitive, object and triangle indexes */
    if (bvh->pack.prim_index.size()) {
      size_t bvh_prim_index_size = bvh->pack.prim_index.size();
      int *bvh_prim_index = &bvh->pack.prim_index[0];
      int *bvh_prim_type = &bvh->pack.prim_type[0];
      uint *bvh_prim_visibility = &bvh->pack.prim_visibility[0];
      float2 *bvh_prim_time = bvh->pack.prim_time.size() ? &bvh->pack.prim_time[0] : NULL;

      for (size_t i = 0; i < bvh_prim_index_size; i++) {
        if (bvh->pack.prim_type[i] & PRIMITIVE_ALL_CURVE) {
          pack_prim_index[pack_prim_index_offset] = bvh_prim_index[i] + geom_prim_offset;
        }
        else {
          pack_prim_index[pack_prim_index_offset] = bvh_prim_index[i] + geom_prim_offset;
        }

        pack_prim_type[pack_prim_index_offset] = bvh_prim_type[i];
        pack_prim_visibility[pack_prim_index_offset] = bvh_prim_visibility[i];
        pack_prim_object[pack_prim_index_offset] = 0;  // unused for instances
        if (bvh_prim_time != NULL) {
          pack_prim_time[pack_prim_index_offset] = bvh_prim_time[i];
        }
        pack_prim_index_offset++;
      }
    }

    /* merge nodes */
    if (bvh->pack.leaf_nodes.size()) {
      int4 *leaf_nodes_offset = &bvh->pack.leaf_nodes[0];
      size_t leaf_nodes_offset_size = bvh->pack.leaf_nodes.size();
      for (size_t i = 0, j = 0; i < leaf_nodes_offset_size; i += BVH_NODE_LEAF_SIZE, j++) {
        int4 data = leaf_nodes_offset[i];
        data.x += prim_offset;
        data.y += prim_offset;
        pack_leaf_nodes[pack_leaf_nodes_offset] = data;
        for (int j = 1; j < BVH_NODE_LEAF_SIZE; ++j) {
          pack_leaf_nodes[pack_leaf_nodes_offset + j] = leaf_nodes_offset[i + j];
        }
        pack_leaf_nodes_offset += BVH_NODE_LEAF_SIZE;
      }
    }

    if (bvh->pack.nodes.size()) {
      int4 *bvh_nodes = &bvh->pack.nodes[0];
      size_t bvh_nodes_size = bvh->pack.nodes.size();

      for (size_t i = 0, j = 0; i < bvh_nodes_size; j++) {
        size_t nsize, nsize_bbox;
        if (bvh_nodes[i].x & PATH_RAY_NODE_UNALIGNED) {
          nsize = BVH_UNALIGNED_NODE_SIZE;
          nsize_bbox = 0;
        }
        else {
          nsize = BVH_NODE_SIZE;
          nsize_bbox = 0;
        }

        memcpy(pack_nodes + pack_nodes_offset, bvh_nodes + i, nsize_bbox * sizeof(int4));

        /* Modify offsets into arrays */
        int4 data = bvh_nodes[i + nsize_bbox];
        data.z += (data.z < 0) ? -noffset_leaf : noffset;
        data.w += (data.w < 0) ? -noffset_leaf : noffset;
        pack_nodes[pack_nodes_offset + nsize_bbox] = data;

        /* Usually this copies nothing, but we better
         * be prepared for possible node size extension.
         */
        memcpy(&pack_nodes[pack_nodes_offset + nsize_bbox + 1],
               &bvh_nodes[i + nsize_bbox + 1],
               sizeof(int4) * (nsize - (nsize_bbox + 1)));

        pack_nodes_offset += nsize;
        i += nsize;
      }
    }

    nodes_offset += bvh->pack.nodes.size();
    nodes_leaf_offset += bvh->pack.leaf_nodes.size();
    prim_offset += bvh->pack.prim_index.size();
  }
}

CCL_NAMESPACE_END