Welcome to mirror list, hosted at ThFree Co, Russian Federation.

bvh2.cpp « bvh « cycles « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: b1a9148c2974349ed2a5792e91f1f8d577011b0b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
/*
 * Adapted from code copyright 2009-2010 NVIDIA Corporation
 * Modifications Copyright 2011, Blender Foundation.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "bvh/bvh2.h"

#include "render/mesh.h"
#include "render/object.h"

#include "bvh/bvh_node.h"
#include "bvh/bvh_unaligned.h"

CCL_NAMESPACE_BEGIN

BVH2::BVH2(const BVHParams &params_,
           const vector<Mesh *> &meshes_,
           const vector<Object *> &objects_)
    : BVH(params_, meshes_, objects_)
{
}

BVHNode *BVH2::widen_children_nodes(const BVHNode *root)
{
  return const_cast<BVHNode *>(root);
}

void BVH2::pack_leaf(const BVHStackEntry &e, const LeafNode *leaf)
{
  assert(e.idx + BVH_NODE_LEAF_SIZE <= pack.leaf_nodes.size());
  float4 data[BVH_NODE_LEAF_SIZE];
  memset(data, 0, sizeof(data));
  if (leaf->num_triangles() == 1 && pack.prim_index[leaf->lo] == -1) {
    /* object */
    data[0].x = __int_as_float(~(leaf->lo));
    data[0].y = __int_as_float(0);
  }
  else {
    /* triangle */
    data[0].x = __int_as_float(leaf->lo);
    data[0].y = __int_as_float(leaf->hi);
  }
  data[0].z = __uint_as_float(leaf->visibility);
  if (leaf->num_triangles() != 0) {
    data[0].w = __uint_as_float(pack.prim_type[leaf->lo]);
  }

  memcpy(&pack.leaf_nodes[e.idx], data, sizeof(float4) * BVH_NODE_LEAF_SIZE);
}

void BVH2::pack_inner(const BVHStackEntry &e, const BVHStackEntry &e0, const BVHStackEntry &e1)
{
  if (e0.node->is_unaligned || e1.node->is_unaligned) {
    pack_unaligned_inner(e, e0, e1);
  }
  else {
    pack_aligned_inner(e, e0, e1);
  }
}

void BVH2::pack_aligned_inner(const BVHStackEntry &e,
                              const BVHStackEntry &e0,
                              const BVHStackEntry &e1)
{
  pack_aligned_node(e.idx,
                    e0.node->bounds,
                    e1.node->bounds,
                    e0.encodeIdx(),
                    e1.encodeIdx(),
                    e0.node->visibility,
                    e1.node->visibility);
}

void BVH2::pack_aligned_node(int idx,
                             const BoundBox &b0,
                             const BoundBox &b1,
                             int c0,
                             int c1,
                             uint visibility0,
                             uint visibility1)
{
  assert(idx + BVH_NODE_SIZE <= pack.nodes.size());
  assert(c0 < 0 || c0 < pack.nodes.size());
  assert(c1 < 0 || c1 < pack.nodes.size());

  int4 data[BVH_NODE_SIZE] = {
      make_int4(
          visibility0 & ~PATH_RAY_NODE_UNALIGNED, visibility1 & ~PATH_RAY_NODE_UNALIGNED, c0, c1),
      make_int4(__float_as_int(b0.min.x),
                __float_as_int(b1.min.x),
                __float_as_int(b0.max.x),
                __float_as_int(b1.max.x)),
      make_int4(__float_as_int(b0.min.y),
                __float_as_int(b1.min.y),
                __float_as_int(b0.max.y),
                __float_as_int(b1.max.y)),
      make_int4(__float_as_int(b0.min.z),
                __float_as_int(b1.min.z),
                __float_as_int(b0.max.z),
                __float_as_int(b1.max.z)),
  };

  memcpy(&pack.nodes[idx], data, sizeof(int4) * BVH_NODE_SIZE);
}

void BVH2::pack_unaligned_inner(const BVHStackEntry &e,
                                const BVHStackEntry &e0,
                                const BVHStackEntry &e1)
{
  pack_unaligned_node(e.idx,
                      e0.node->get_aligned_space(),
                      e1.node->get_aligned_space(),
                      e0.node->bounds,
                      e1.node->bounds,
                      e0.encodeIdx(),
                      e1.encodeIdx(),
                      e0.node->visibility,
                      e1.node->visibility);
}

void BVH2::pack_unaligned_node(int idx,
                               const Transform &aligned_space0,
                               const Transform &aligned_space1,
                               const BoundBox &bounds0,
                               const BoundBox &bounds1,
                               int c0,
                               int c1,
                               uint visibility0,
                               uint visibility1)
{
  assert(idx + BVH_UNALIGNED_NODE_SIZE <= pack.nodes.size());
  assert(c0 < 0 || c0 < pack.nodes.size());
  assert(c1 < 0 || c1 < pack.nodes.size());

  float4 data[BVH_UNALIGNED_NODE_SIZE];
  Transform space0 = BVHUnaligned::compute_node_transform(bounds0, aligned_space0);
  Transform space1 = BVHUnaligned::compute_node_transform(bounds1, aligned_space1);
  data[0] = make_float4(__int_as_float(visibility0 | PATH_RAY_NODE_UNALIGNED),
                        __int_as_float(visibility1 | PATH_RAY_NODE_UNALIGNED),
                        __int_as_float(c0),
                        __int_as_float(c1));

  data[1] = space0.x;
  data[2] = space0.y;
  data[3] = space0.z;
  data[4] = space1.x;
  data[5] = space1.y;
  data[6] = space1.z;

  memcpy(&pack.nodes[idx], data, sizeof(float4) * BVH_UNALIGNED_NODE_SIZE);
}

void BVH2::pack_nodes(const BVHNode *root)
{
  const size_t num_nodes = root->getSubtreeSize(BVH_STAT_NODE_COUNT);
  const size_t num_leaf_nodes = root->getSubtreeSize(BVH_STAT_LEAF_COUNT);
  assert(num_leaf_nodes <= num_nodes);
  const size_t num_inner_nodes = num_nodes - num_leaf_nodes;
  size_t node_size;
  if (params.use_unaligned_nodes) {
    const size_t num_unaligned_nodes = root->getSubtreeSize(BVH_STAT_UNALIGNED_INNER_COUNT);
    node_size = (num_unaligned_nodes * BVH_UNALIGNED_NODE_SIZE) +
                (num_inner_nodes - num_unaligned_nodes) * BVH_NODE_SIZE;
  }
  else {
    node_size = num_inner_nodes * BVH_NODE_SIZE;
  }
  /* Resize arrays */
  pack.nodes.clear();
  pack.leaf_nodes.clear();
  /* For top level BVH, first merge existing BVH's so we know the offsets. */
  if (params.top_level) {
    pack_instances(node_size, num_leaf_nodes * BVH_NODE_LEAF_SIZE);
  }
  else {
    pack.nodes.resize(node_size);
    pack.leaf_nodes.resize(num_leaf_nodes * BVH_NODE_LEAF_SIZE);
  }

  int nextNodeIdx = 0, nextLeafNodeIdx = 0;

  vector<BVHStackEntry> stack;
  stack.reserve(BVHParams::MAX_DEPTH * 2);
  if (root->is_leaf()) {
    stack.push_back(BVHStackEntry(root, nextLeafNodeIdx++));
  }
  else {
    stack.push_back(BVHStackEntry(root, nextNodeIdx));
    nextNodeIdx += root->has_unaligned() ? BVH_UNALIGNED_NODE_SIZE : BVH_NODE_SIZE;
  }

  while (stack.size()) {
    BVHStackEntry e = stack.back();
    stack.pop_back();

    if (e.node->is_leaf()) {
      /* leaf node */
      const LeafNode *leaf = reinterpret_cast<const LeafNode *>(e.node);
      pack_leaf(e, leaf);
    }
    else {
      /* inner node */
      int idx[2];
      for (int i = 0; i < 2; ++i) {
        if (e.node->get_child(i)->is_leaf()) {
          idx[i] = nextLeafNodeIdx++;
        }
        else {
          idx[i] = nextNodeIdx;
          nextNodeIdx += e.node->get_child(i)->has_unaligned() ? BVH_UNALIGNED_NODE_SIZE :
                                                                 BVH_NODE_SIZE;
        }
      }

      stack.push_back(BVHStackEntry(e.node->get_child(0), idx[0]));
      stack.push_back(BVHStackEntry(e.node->get_child(1), idx[1]));

      pack_inner(e, stack[stack.size() - 2], stack[stack.size() - 1]);
    }
  }
  assert(node_size == nextNodeIdx);
  /* root index to start traversal at, to handle case of single leaf node */
  pack.root_index = (root->is_leaf()) ? -1 : 0;
}

void BVH2::refit_nodes()
{
  assert(!params.top_level);

  BoundBox bbox = BoundBox::empty;
  uint visibility = 0;
  refit_node(0, (pack.root_index == -1) ? true : false, bbox, visibility);
}

void BVH2::refit_node(int idx, bool leaf, BoundBox &bbox, uint &visibility)
{
  if (leaf) {
    /* refit leaf node */
    assert(idx + BVH_NODE_LEAF_SIZE <= pack.leaf_nodes.size());
    const int4 *data = &pack.leaf_nodes[idx];
    const int c0 = data[0].x;
    const int c1 = data[0].y;

    BVH::refit_primitives(c0, c1, bbox, visibility);

    /* TODO(sergey): De-duplicate with pack_leaf(). */
    float4 leaf_data[BVH_NODE_LEAF_SIZE];
    leaf_data[0].x = __int_as_float(c0);
    leaf_data[0].y = __int_as_float(c1);
    leaf_data[0].z = __uint_as_float(visibility);
    leaf_data[0].w = __uint_as_float(data[0].w);
    memcpy(&pack.leaf_nodes[idx], leaf_data, sizeof(float4) * BVH_NODE_LEAF_SIZE);
  }
  else {
    assert(idx + BVH_NODE_SIZE <= pack.nodes.size());

    const int4 *data = &pack.nodes[idx];
    const bool is_unaligned = (data[0].x & PATH_RAY_NODE_UNALIGNED) != 0;
    const int c0 = data[0].z;
    const int c1 = data[0].w;
    /* refit inner node, set bbox from children */
    BoundBox bbox0 = BoundBox::empty, bbox1 = BoundBox::empty;
    uint visibility0 = 0, visibility1 = 0;

    refit_node((c0 < 0) ? -c0 - 1 : c0, (c0 < 0), bbox0, visibility0);
    refit_node((c1 < 0) ? -c1 - 1 : c1, (c1 < 0), bbox1, visibility1);

    if (is_unaligned) {
      Transform aligned_space = transform_identity();
      pack_unaligned_node(
          idx, aligned_space, aligned_space, bbox0, bbox1, c0, c1, visibility0, visibility1);
    }
    else {
      pack_aligned_node(idx, bbox0, bbox1, c0, c1, visibility0, visibility1);
    }

    bbox.grow(bbox0);
    bbox.grow(bbox1);
    visibility = visibility0 | visibility1;
  }
}

CCL_NAMESPACE_END