Welcome to mirror list, hosted at ThFree Co, Russian Federation.

bvh_binning.cpp « bvh « cycles « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 63a7fc116680d8caa2c9040291213a12d6780f91 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
/*
 * Adapted from code copyright 2009-2011 Intel Corporation
 * Modifications Copyright 2012, Blender Foundation.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

//#define __KERNEL_SSE__

#include "bvh/bvh_binning.h"

#include <stdlib.h>

#include "util/util_algorithm.h"
#include "util/util_boundbox.h"
#include "util/util_types.h"

CCL_NAMESPACE_BEGIN

/* SSE replacements */

__forceinline void prefetch_L1 (const void* /*ptr*/) { }
__forceinline void prefetch_L2 (const void* /*ptr*/) { }
__forceinline void prefetch_L3 (const void* /*ptr*/) { }
__forceinline void prefetch_NTA(const void* /*ptr*/) { }

template<size_t src> __forceinline float extract(const int4& b)
{ return b[src]; }
template<size_t dst> __forceinline const float4 insert(const float4& a, const float b)
{ float4 r = a; r[dst] = b; return r; }

__forceinline int get_best_dimension(const float4& bestSAH)
{
	// return (int)__bsf(movemask(reduce_min(bestSAH) == bestSAH));

	float minSAH = min(bestSAH.x, min(bestSAH.y, bestSAH.z));

	if(bestSAH.x == minSAH) return 0;
	else if(bestSAH.y == minSAH) return 1;
	else return 2;
}

/* BVH Object Binning */

BVHObjectBinning::BVHObjectBinning(const BVHRange& job,
                                   BVHReference *prims,
                                   const BVHUnaligned *unaligned_heuristic,
                                   const Transform *aligned_space)
: BVHRange(job),
  splitSAH(FLT_MAX),
  dim(0),
  pos(0),
  unaligned_heuristic_(unaligned_heuristic),
  aligned_space_(aligned_space)
{
	if(aligned_space_ == NULL) {
		bounds_ = bounds();
		cent_bounds_ = cent_bounds();
	}
	else {
		/* TODO(sergey): With some additional storage we can avoid
		 * need in re-calculating this.
		 */
		bounds_ = unaligned_heuristic->compute_aligned_boundbox(
		        *this,
		        prims,
		        *aligned_space,
		        &cent_bounds_);
	}

	/* compute number of bins to use and precompute scaling factor for binning */
	num_bins = min(size_t(MAX_BINS), size_t(4.0f + 0.05f*size()));
	scale = rcp(cent_bounds_.size()) * make_float3((float)num_bins);

	/* initialize binning counter and bounds */
	BoundBox bin_bounds[MAX_BINS][4];	/* bounds for every bin in every dimension */
	int4 bin_count[MAX_BINS];			/* number of primitives mapped to bin */

	for(size_t i = 0; i < num_bins; i++) {
		bin_count[i] = make_int4(0);
		bin_bounds[i][0] = bin_bounds[i][1] = bin_bounds[i][2] = BoundBox::empty;
	}

	/* map geometry to bins, unrolled once */
	{
		ssize_t i;

		for(i = 0; i < ssize_t(size()) - 1; i += 2) {
			prefetch_L2(&prims[start() + i + 8]);

			/* map even and odd primitive to bin */
			const BVHReference& prim0 = prims[start() + i + 0];
			const BVHReference& prim1 = prims[start() + i + 1];

			BoundBox bounds0 = get_prim_bounds(prim0);
			BoundBox bounds1 = get_prim_bounds(prim1);

			int4 bin0 = get_bin(bounds0);
			int4 bin1 = get_bin(bounds1);

			/* increase bounds for bins for even primitive */
			int b00 = (int)extract<0>(bin0); bin_count[b00][0]++; bin_bounds[b00][0].grow(bounds0);
			int b01 = (int)extract<1>(bin0); bin_count[b01][1]++; bin_bounds[b01][1].grow(bounds0);
			int b02 = (int)extract<2>(bin0); bin_count[b02][2]++; bin_bounds[b02][2].grow(bounds0);

			/* increase bounds of bins for odd primitive */
			int b10 = (int)extract<0>(bin1); bin_count[b10][0]++; bin_bounds[b10][0].grow(bounds1);
			int b11 = (int)extract<1>(bin1); bin_count[b11][1]++; bin_bounds[b11][1].grow(bounds1);
			int b12 = (int)extract<2>(bin1); bin_count[b12][2]++; bin_bounds[b12][2].grow(bounds1);
		}

		/* for uneven number of primitives */
		if(i < ssize_t(size())) {
			/* map primitive to bin */
			const BVHReference& prim0 = prims[start() + i];
			BoundBox bounds0 = get_prim_bounds(prim0);
			int4 bin0 = get_bin(bounds0);

			/* increase bounds of bins */
			int b00 = (int)extract<0>(bin0); bin_count[b00][0]++; bin_bounds[b00][0].grow(bounds0);
			int b01 = (int)extract<1>(bin0); bin_count[b01][1]++; bin_bounds[b01][1].grow(bounds0);
			int b02 = (int)extract<2>(bin0); bin_count[b02][2]++; bin_bounds[b02][2].grow(bounds0);
		}
	}

	/* sweep from right to left and compute parallel prefix of merged bounds */
	float4 r_area[MAX_BINS];	/* area of bounds of primitives on the right */
	float4 r_count[MAX_BINS];	/* number of primitives on the right */
	int4 count = make_int4(0);

	BoundBox bx = BoundBox::empty;
	BoundBox by = BoundBox::empty;
	BoundBox bz = BoundBox::empty;

	for(size_t i = num_bins - 1; i > 0; i--) {
		count = count + bin_count[i];
		r_count[i] = blocks(count);

		bx = merge(bx,bin_bounds[i][0]); r_area[i][0] = bx.half_area();
		by = merge(by,bin_bounds[i][1]); r_area[i][1] = by.half_area();
		bz = merge(bz,bin_bounds[i][2]); r_area[i][2] = bz.half_area();
		r_area[i][3] = r_area[i][2];
	}

	/* sweep from left to right and compute SAH */
	int4 ii = make_int4(1);
	float4 bestSAH = make_float4(FLT_MAX);
	int4 bestSplit = make_int4(-1);

	count = make_int4(0);

	bx = BoundBox::empty;
	by = BoundBox::empty;
	bz = BoundBox::empty;

	for(size_t i = 1; i < num_bins; i++, ii += make_int4(1)) {
		count = count + bin_count[i-1];

		bx = merge(bx,bin_bounds[i-1][0]); float Ax = bx.half_area();
		by = merge(by,bin_bounds[i-1][1]); float Ay = by.half_area();
		bz = merge(bz,bin_bounds[i-1][2]); float Az = bz.half_area();

		float4 lCount = blocks(count);
		float4 lArea = make_float4(Ax,Ay,Az,Az);
		float4 sah = lArea*lCount + r_area[i]*r_count[i];

		bestSplit = select(sah < bestSAH,ii,bestSplit);
		bestSAH = min(sah,bestSAH);
	}

	int4 mask = float3_to_float4(cent_bounds_.size()) <= make_float4(0.0f);
	bestSAH = insert<3>(select(mask, make_float4(FLT_MAX), bestSAH), FLT_MAX);

	/* find best dimension */
	dim = get_best_dimension(bestSAH);
	splitSAH = bestSAH[dim];
	pos = bestSplit[dim];
	leafSAH = bounds_.half_area() * blocks(size());
}

void BVHObjectBinning::split(BVHReference* prims,
                             BVHObjectBinning& left_o,
                             BVHObjectBinning& right_o) const
{
	size_t N = size();

	BoundBox lgeom_bounds = BoundBox::empty;
	BoundBox rgeom_bounds = BoundBox::empty;
	BoundBox lcent_bounds = BoundBox::empty;
	BoundBox rcent_bounds = BoundBox::empty;

	ssize_t l = 0, r = N-1;

	while(l <= r) {
		prefetch_L2(&prims[start() + l + 8]);
		prefetch_L2(&prims[start() + r - 8]);

		BVHReference prim = prims[start() + l];
		BoundBox unaligned_bounds = get_prim_bounds(prim);
		float3 unaligned_center = unaligned_bounds.center2();
		float3 center = prim.bounds().center2();

		if(get_bin(unaligned_center)[dim] < pos) {
			lgeom_bounds.grow(prim.bounds());
			lcent_bounds.grow(center);
			l++;
		}
		else {
			rgeom_bounds.grow(prim.bounds());
			rcent_bounds.grow(center);
			swap(prims[start()+l],prims[start()+r]);
			r--;
		}
	}
	/* finish */
	if(l != 0 && N-1-r != 0) {
		right_o = BVHObjectBinning(BVHRange(rgeom_bounds, rcent_bounds, start() + l, N-1-r), prims);
		left_o  = BVHObjectBinning(BVHRange(lgeom_bounds, lcent_bounds, start(), l), prims);
		return;
	}

	/* object medium split if we did not make progress, can happen when all
	 * primitives have same centroid */
	lgeom_bounds = BoundBox::empty;
	rgeom_bounds = BoundBox::empty;
	lcent_bounds = BoundBox::empty;
	rcent_bounds = BoundBox::empty;

	for(size_t i = 0; i < N/2; i++) {
		lgeom_bounds.grow(prims[start()+i].bounds());
		lcent_bounds.grow(prims[start()+i].bounds().center2());
	}

	for(size_t i = N/2; i < N; i++) {
		rgeom_bounds.grow(prims[start()+i].bounds());
		rcent_bounds.grow(prims[start()+i].bounds().center2());
	}

	right_o = BVHObjectBinning(BVHRange(rgeom_bounds, rcent_bounds, start() + N/2, N/2 + N%2), prims);
	left_o  = BVHObjectBinning(BVHRange(lgeom_bounds, lcent_bounds, start(), N/2), prims);
}

CCL_NAMESPACE_END