Welcome to mirror list, hosted at ThFree Co, Russian Federation.

device_denoising.cpp « device « cycles « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 613bd9112cf3b890adbd9c4664e2211fde8084bc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
/*
 * Copyright 2011-2017 Blender Foundation
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "device/device_denoising.h"

#include "kernel/filter/filter_defines.h"

CCL_NAMESPACE_BEGIN

void DenoisingTask::init_from_devicetask(const DeviceTask &task)
{
	radius = task.denoising_radius;
	nlm_k_2 = powf(2.0f, lerp(-5.0f, 3.0f, task.denoising_strength));
	if(task.denoising_relative_pca) {
		pca_threshold = -powf(10.0f, lerp(-8.0f, 0.0f, task.denoising_feature_strength));
	}
	else {
		pca_threshold = powf(10.0f, lerp(-5.0f, 3.0f, task.denoising_feature_strength));
	}

	render_buffer.pass_stride = task.pass_stride;
	render_buffer.denoising_data_offset  = task.pass_denoising_data;
	render_buffer.denoising_clean_offset = task.pass_denoising_clean;

	/* Expand filter_area by radius pixels and clamp the result to the extent of the neighboring tiles */
	rect = make_int4(max(tiles->x[0], filter_area.x - radius),
	                 max(tiles->y[0], filter_area.y - radius),
	                 min(tiles->x[3], filter_area.x + filter_area.z + radius),
	                 min(tiles->y[3], filter_area.y + filter_area.w + radius));
}

void DenoisingTask::tiles_from_rendertiles(RenderTile *rtiles)
{
	tiles = (TilesInfo*) tiles_mem.resize(sizeof(TilesInfo)/sizeof(int));

	device_ptr buffers[9];
	for(int i = 0; i < 9; i++) {
		buffers[i] = rtiles[i].buffer;
		tiles->offsets[i] = rtiles[i].offset;
		tiles->strides[i] = rtiles[i].stride;
	}
	tiles->x[0] = rtiles[3].x;
	tiles->x[1] = rtiles[4].x;
	tiles->x[2] = rtiles[5].x;
	tiles->x[3] = rtiles[5].x + rtiles[5].w;
	tiles->y[0] = rtiles[1].y;
	tiles->y[1] = rtiles[4].y;
	tiles->y[2] = rtiles[7].y;
	tiles->y[3] = rtiles[7].y + rtiles[7].h;

	render_buffer.offset = rtiles[4].offset;
	render_buffer.stride = rtiles[4].stride;
	render_buffer.ptr    = rtiles[4].buffer;

	functions.set_tiles(buffers);
}

bool DenoisingTask::run_denoising()
{
	/* Allocate denoising buffer. */
	buffer.passes = 14;
	buffer.w = align_up(rect.z - rect.x, 4);
	buffer.h = rect.w - rect.y;
	buffer.pass_stride = align_up(buffer.w * buffer.h, divide_up(device->mem_address_alignment(), sizeof(float)));
	buffer.mem.resize(buffer.pass_stride * buffer.passes);
	device->mem_alloc("Denoising Pixel Buffer", buffer.mem, MEM_READ_WRITE);

	device_ptr null_ptr = (device_ptr) 0;

	/* Prefilter shadow feature. */
	{
		device_sub_ptr unfiltered_a   (device, buffer.mem, 0,                    buffer.pass_stride, MEM_READ_WRITE);
		device_sub_ptr unfiltered_b   (device, buffer.mem, 1*buffer.pass_stride, buffer.pass_stride, MEM_READ_WRITE);
		device_sub_ptr sample_var     (device, buffer.mem, 2*buffer.pass_stride, buffer.pass_stride, MEM_READ_WRITE);
		device_sub_ptr sample_var_var (device, buffer.mem, 3*buffer.pass_stride, buffer.pass_stride, MEM_READ_WRITE);
		device_sub_ptr buffer_var     (device, buffer.mem, 5*buffer.pass_stride, buffer.pass_stride, MEM_READ_WRITE);
		device_sub_ptr filtered_var   (device, buffer.mem, 6*buffer.pass_stride, buffer.pass_stride, MEM_READ_WRITE);
		device_sub_ptr nlm_temporary_1(device, buffer.mem, 7*buffer.pass_stride, buffer.pass_stride, MEM_READ_WRITE);
		device_sub_ptr nlm_temporary_2(device, buffer.mem, 8*buffer.pass_stride, buffer.pass_stride, MEM_READ_WRITE);
		device_sub_ptr nlm_temporary_3(device, buffer.mem, 9*buffer.pass_stride, buffer.pass_stride, MEM_READ_WRITE);

		nlm_state.temporary_1_ptr = *nlm_temporary_1;
		nlm_state.temporary_2_ptr = *nlm_temporary_2;
		nlm_state.temporary_3_ptr = *nlm_temporary_3;

		/* Get the A/B unfiltered passes, the combined sample variance, the estimated variance of the sample variance and the buffer variance. */
		functions.divide_shadow(*unfiltered_a, *unfiltered_b, *sample_var, *sample_var_var, *buffer_var);

		/* Smooth the (generally pretty noisy) buffer variance using the spatial information from the sample variance. */
		nlm_state.set_parameters(6, 3, 4.0f, 1.0f);
		functions.non_local_means(*buffer_var, *sample_var, *sample_var_var, *filtered_var);

		/* Reuse memory, the previous data isn't needed anymore. */
		device_ptr filtered_a = *buffer_var,
		           filtered_b = *sample_var;
		/* Use the smoothed variance to filter the two shadow half images using each other for weight calculation. */
		nlm_state.set_parameters(5, 3, 1.0f, 0.25f);
		functions.non_local_means(*unfiltered_a, *unfiltered_b, *filtered_var, filtered_a);
		functions.non_local_means(*unfiltered_b, *unfiltered_a, *filtered_var, filtered_b);

		device_ptr residual_var = *sample_var_var;
		/* Estimate the residual variance between the two filtered halves. */
		functions.combine_halves(filtered_a, filtered_b, null_ptr, residual_var, 2, rect);

		device_ptr final_a = *unfiltered_a,
		           final_b = *unfiltered_b;
		/* Use the residual variance for a second filter pass. */
		nlm_state.set_parameters(4, 2, 1.0f, 0.5f);
		functions.non_local_means(filtered_a, filtered_b, residual_var, final_a);
		functions.non_local_means(filtered_b, filtered_a, residual_var, final_b);

		/* Combine the two double-filtered halves to a final shadow feature. */
		device_sub_ptr shadow_pass(device, buffer.mem, 4*buffer.pass_stride, buffer.pass_stride, MEM_READ_WRITE);
		functions.combine_halves(final_a, final_b, *shadow_pass, null_ptr, 0, rect);
	}

	/* Prefilter general features. */
	{
		device_sub_ptr unfiltered     (device, buffer.mem,  8*buffer.pass_stride, buffer.pass_stride, MEM_READ_WRITE);
		device_sub_ptr variance       (device, buffer.mem,  9*buffer.pass_stride, buffer.pass_stride, MEM_READ_WRITE);
		device_sub_ptr nlm_temporary_1(device, buffer.mem, 10*buffer.pass_stride, buffer.pass_stride, MEM_READ_WRITE);
		device_sub_ptr nlm_temporary_2(device, buffer.mem, 11*buffer.pass_stride, buffer.pass_stride, MEM_READ_WRITE);
		device_sub_ptr nlm_temporary_3(device, buffer.mem, 12*buffer.pass_stride, buffer.pass_stride, MEM_READ_WRITE);

		nlm_state.temporary_1_ptr = *nlm_temporary_1;
		nlm_state.temporary_2_ptr = *nlm_temporary_2;
		nlm_state.temporary_3_ptr = *nlm_temporary_3;

		int mean_from[]     = { 0, 1, 2, 12, 6,  7, 8 };
		int variance_from[] = { 3, 4, 5, 13, 9, 10, 11};
		int pass_to[]       = { 1, 2, 3, 0,  5,  6,  7};
		for(int pass = 0; pass < 7; pass++) {
			device_sub_ptr feature_pass(device, buffer.mem, pass_to[pass]*buffer.pass_stride, buffer.pass_stride, MEM_READ_WRITE);
			/* Get the unfiltered pass and its variance from the RenderBuffers. */
			functions.get_feature(mean_from[pass], variance_from[pass], *unfiltered, *variance);
			/* Smooth the pass and store the result in the denoising buffers. */
			nlm_state.set_parameters(2, 2, 1.0f, 0.25f);
			functions.non_local_means(*unfiltered, *unfiltered, *variance, *feature_pass);
		}
	}

	/* Copy color passes. */
	{
		int mean_from[]     = {20, 21, 22};
		int variance_from[] = {23, 24, 25};
		int mean_to[]       = { 8,  9, 10};
		int variance_to[]   = {11, 12, 13};
		int num_color_passes = 3;

		device_only_memory<float> temp_color;
		temp_color.resize(3*buffer.pass_stride);
		device->mem_alloc("Denoising temporary color", temp_color, MEM_READ_WRITE);

		for(int pass = 0; pass < num_color_passes; pass++) {
			device_sub_ptr color_pass(device, temp_color, pass*buffer.pass_stride, buffer.pass_stride, MEM_READ_WRITE);
			device_sub_ptr color_var_pass(device, buffer.mem, variance_to[pass]*buffer.pass_stride, buffer.pass_stride, MEM_READ_WRITE);
			functions.get_feature(mean_from[pass], variance_from[pass], *color_pass, *color_var_pass);
		}

		{
			device_sub_ptr depth_pass    (device, buffer.mem,                                 0,   buffer.pass_stride, MEM_READ_WRITE);
			device_sub_ptr color_var_pass(device, buffer.mem, variance_to[0]*buffer.pass_stride, 3*buffer.pass_stride, MEM_READ_WRITE);
			device_sub_ptr output_pass   (device, buffer.mem,     mean_to[0]*buffer.pass_stride, 3*buffer.pass_stride, MEM_READ_WRITE);
			functions.detect_outliers(temp_color.device_pointer, *color_var_pass, *depth_pass, *output_pass);
		}

		device->mem_free(temp_color);
	}

	storage.w = filter_area.z;
	storage.h = filter_area.w;
	storage.transform.resize(storage.w*storage.h*TRANSFORM_SIZE);
	storage.rank.resize(storage.w*storage.h);
	device->mem_alloc("Denoising Transform", storage.transform, MEM_READ_WRITE);
	device->mem_alloc("Denoising Rank", storage.rank, MEM_READ_WRITE);

	functions.construct_transform();

	device_only_memory<float> temporary_1;
	device_only_memory<float> temporary_2;
	temporary_1.resize(buffer.w*buffer.h);
	temporary_2.resize(buffer.w*buffer.h);
	device->mem_alloc("Denoising NLM temporary 1", temporary_1, MEM_READ_WRITE);
	device->mem_alloc("Denoising NLM temporary 2", temporary_2, MEM_READ_WRITE);
	reconstruction_state.temporary_1_ptr = temporary_1.device_pointer;
	reconstruction_state.temporary_2_ptr = temporary_2.device_pointer;

	storage.XtWX.resize(storage.w*storage.h*XTWX_SIZE);
	storage.XtWY.resize(storage.w*storage.h*XTWY_SIZE);
	device->mem_alloc("Denoising XtWX", storage.XtWX, MEM_READ_WRITE);
	device->mem_alloc("Denoising XtWY", storage.XtWY, MEM_READ_WRITE);

	reconstruction_state.filter_rect = make_int4(filter_area.x-rect.x, filter_area.y-rect.y, storage.w, storage.h);
	int tile_coordinate_offset = filter_area.y*render_buffer.stride + filter_area.x;
	reconstruction_state.buffer_params = make_int4(render_buffer.offset + tile_coordinate_offset,
	                                               render_buffer.stride,
	                                               render_buffer.pass_stride,
	                                               render_buffer.denoising_clean_offset);
	reconstruction_state.source_w = rect.z-rect.x;
	reconstruction_state.source_h = rect.w-rect.y;

	{
		device_sub_ptr color_ptr    (device, buffer.mem,  8*buffer.pass_stride, 3*buffer.pass_stride, MEM_READ_WRITE);
		device_sub_ptr color_var_ptr(device, buffer.mem, 11*buffer.pass_stride, 3*buffer.pass_stride, MEM_READ_WRITE);
		functions.reconstruct(*color_ptr, *color_var_ptr, *color_ptr, *color_var_ptr, render_buffer.ptr);
	}

	device->mem_free(storage.XtWX);
	device->mem_free(storage.XtWY);
	device->mem_free(storage.transform);
	device->mem_free(storage.rank);
	device->mem_free(temporary_1);
	device->mem_free(temporary_2);
	device->mem_free(buffer.mem);
	device->mem_free(tiles_mem);
	return true;
}

CCL_NAMESPACE_END