Welcome to mirror list, hosted at ThFree Co, Russian Federation.

device_multi.cpp « device « cycles « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: e5b138917ff9cd5cd7400b7e7272ce590acb736c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
/*
 * Copyright 2011-2013 Blender Foundation
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <sstream>
#include <stdlib.h>

#include "bvh/bvh_multi.h"

#include "device/device.h"
#include "device/device_intern.h"
#include "device/device_network.h"

#include "render/buffers.h"
#include "render/geometry.h"

#include "util/util_foreach.h"
#include "util/util_list.h"
#include "util/util_logging.h"
#include "util/util_map.h"
#include "util/util_time.h"

CCL_NAMESPACE_BEGIN

class MultiDevice : public Device {
 public:
  struct SubDevice {
    Stats stats;
    Device *device;
    map<device_ptr, device_ptr> ptr_map;
    int peer_island_index = -1;
  };

  list<SubDevice> devices, denoising_devices;
  device_ptr unique_key;
  vector<vector<SubDevice *>> peer_islands;
  bool matching_rendering_and_denoising_devices;

  MultiDevice(DeviceInfo &info, Stats &stats, Profiler &profiler, bool background_)
      : Device(info, stats, profiler, background_), unique_key(1)
  {
    foreach (DeviceInfo &subinfo, info.multi_devices) {
      /* Always add CPU devices at the back since GPU devices can change
       * host memory pointers, which CPU uses as device pointer. */
      SubDevice *sub;
      if (subinfo.type == DEVICE_CPU) {
        devices.emplace_back();
        sub = &devices.back();
      }
      else {
        devices.emplace_front();
        sub = &devices.front();
      }

      /* The pointer to 'sub->stats' will stay valid even after new devices
       * are added, since 'devices' is a linked list. */
      sub->device = Device::create(subinfo, sub->stats, profiler, background);
    }

    foreach (DeviceInfo &subinfo, info.denoising_devices) {
      denoising_devices.emplace_front();
      SubDevice *sub = &denoising_devices.front();

      sub->device = Device::create(subinfo, sub->stats, profiler, background);
    }

    /* Build a list of peer islands for the available render devices */
    foreach (SubDevice &sub, devices) {
      /* First ensure that every device is in at least once peer island */
      if (sub.peer_island_index < 0) {
        peer_islands.emplace_back();
        sub.peer_island_index = (int)peer_islands.size() - 1;
        peer_islands[sub.peer_island_index].push_back(&sub);
      }

      if (!info.has_peer_memory) {
        continue;
      }

      /* Second check peer access between devices and fill up the islands accordingly */
      foreach (SubDevice &peer_sub, devices) {
        if (peer_sub.peer_island_index < 0 &&
            peer_sub.device->info.type == sub.device->info.type &&
            peer_sub.device->check_peer_access(sub.device)) {
          peer_sub.peer_island_index = sub.peer_island_index;
          peer_islands[sub.peer_island_index].push_back(&peer_sub);
        }
      }
    }

    /* Try to re-use memory when denoising and render devices use the same physical devices
     * (e.g. OptiX denoising and CUDA rendering device pointing to the same GPU).
     * Ordering has to match as well, so that 'DeviceTask::split' behaves consistent. */
    matching_rendering_and_denoising_devices = denoising_devices.empty() ||
                                               (devices.size() == denoising_devices.size());
    if (matching_rendering_and_denoising_devices) {
      for (list<SubDevice>::iterator device_it = devices.begin(),
                                     denoising_device_it = denoising_devices.begin();
           device_it != devices.end() && denoising_device_it != denoising_devices.end();
           ++device_it, ++denoising_device_it) {
        const DeviceInfo &info = device_it->device->info;
        const DeviceInfo &denoising_info = denoising_device_it->device->info;
        if ((info.type != DEVICE_CUDA && info.type != DEVICE_OPTIX) ||
            (denoising_info.type != DEVICE_CUDA && denoising_info.type != DEVICE_OPTIX) ||
            info.num != denoising_info.num) {
          matching_rendering_and_denoising_devices = false;
          break;
        }
      }
    }

#ifdef WITH_NETWORK
    /* try to add network devices */
    ServerDiscovery discovery(true);
    time_sleep(1.0);

    vector<string> servers = discovery.get_server_list();

    foreach (string &server, servers) {
      Device *device = device_network_create(info, stats, profiler, server.c_str());
      if (device)
        devices.push_back(SubDevice(device));
    }
#endif
  }

  ~MultiDevice()
  {
    foreach (SubDevice &sub, devices)
      delete sub.device;
    foreach (SubDevice &sub, denoising_devices)
      delete sub.device;
  }

  const string &error_message() override
  {
    error_msg.clear();

    foreach (SubDevice &sub, devices)
      error_msg += sub.device->error_message();
    foreach (SubDevice &sub, denoising_devices)
      error_msg += sub.device->error_message();

    return error_msg;
  }

  virtual bool show_samples() const override
  {
    if (devices.size() > 1) {
      return false;
    }
    return devices.front().device->show_samples();
  }

  virtual BVHLayoutMask get_bvh_layout_mask() const override
  {
    BVHLayoutMask bvh_layout_mask = BVH_LAYOUT_ALL;
    BVHLayoutMask bvh_layout_mask_all = BVH_LAYOUT_NONE;
    foreach (const SubDevice &sub_device, devices) {
      BVHLayoutMask device_bvh_layout_mask = sub_device.device->get_bvh_layout_mask();
      bvh_layout_mask &= device_bvh_layout_mask;
      bvh_layout_mask_all |= device_bvh_layout_mask;
    }

    /* With multiple OptiX devices, every device needs its own acceleration structure */
    if (bvh_layout_mask == BVH_LAYOUT_OPTIX) {
      return BVH_LAYOUT_MULTI_OPTIX;
    }

    /* When devices do not share a common BVH layout, fall back to creating one for each */
    const BVHLayoutMask BVH_LAYOUT_OPTIX_EMBREE = (BVH_LAYOUT_OPTIX | BVH_LAYOUT_EMBREE);
    if ((bvh_layout_mask_all & BVH_LAYOUT_OPTIX_EMBREE) == BVH_LAYOUT_OPTIX_EMBREE) {
      return BVH_LAYOUT_MULTI_OPTIX_EMBREE;
    }

    return bvh_layout_mask;
  }

  bool load_kernels(const DeviceRequestedFeatures &requested_features) override
  {
    foreach (SubDevice &sub, devices)
      if (!sub.device->load_kernels(requested_features))
        return false;

    if (requested_features.use_denoising) {
      /* Only need denoising feature, everything else is unused. */
      DeviceRequestedFeatures denoising_features;
      denoising_features.use_denoising = true;
      foreach (SubDevice &sub, denoising_devices)
        if (!sub.device->load_kernels(denoising_features))
          return false;
    }

    return true;
  }

  bool wait_for_availability(const DeviceRequestedFeatures &requested_features) override
  {
    foreach (SubDevice &sub, devices)
      if (!sub.device->wait_for_availability(requested_features))
        return false;

    if (requested_features.use_denoising) {
      foreach (SubDevice &sub, denoising_devices)
        if (!sub.device->wait_for_availability(requested_features))
          return false;
    }

    return true;
  }

  DeviceKernelStatus get_active_kernel_switch_state() override
  {
    DeviceKernelStatus result = DEVICE_KERNEL_USING_FEATURE_KERNEL;

    foreach (SubDevice &sub, devices) {
      DeviceKernelStatus subresult = sub.device->get_active_kernel_switch_state();
      switch (subresult) {
        case DEVICE_KERNEL_WAITING_FOR_FEATURE_KERNEL:
          result = subresult;
          break;

        case DEVICE_KERNEL_FEATURE_KERNEL_INVALID:
        case DEVICE_KERNEL_FEATURE_KERNEL_AVAILABLE:
          return subresult;

        case DEVICE_KERNEL_USING_FEATURE_KERNEL:
        case DEVICE_KERNEL_UNKNOWN:
          break;
      }
    }

    return result;
  }

  void build_bvh(BVH *bvh, Progress &progress, bool refit) override
  {
    /* Try to build and share a single acceleration structure, if possible */
    if (bvh->params.bvh_layout == BVH_LAYOUT_BVH2) {
      devices.back().device->build_bvh(bvh, progress, refit);
      return;
    }

    BVHMulti *const bvh_multi = static_cast<BVHMulti *>(bvh);
    bvh_multi->sub_bvhs.resize(devices.size());

    vector<BVHMulti *> geom_bvhs;
    geom_bvhs.reserve(bvh->geometry.size());
    foreach (Geometry *geom, bvh->geometry) {
      geom_bvhs.push_back(static_cast<BVHMulti *>(geom->bvh));
    }

    /* Broadcast acceleration structure build to all render devices */
    size_t i = 0;
    foreach (SubDevice &sub, devices) {
      /* Change geometry BVH pointers to the sub BVH */
      for (size_t k = 0; k < bvh->geometry.size(); ++k) {
        bvh->geometry[k]->bvh = geom_bvhs[k]->sub_bvhs[i];
      }

      if (!bvh_multi->sub_bvhs[i]) {
        BVHParams params = bvh->params;
        if (bvh->params.bvh_layout == BVH_LAYOUT_MULTI_OPTIX)
          params.bvh_layout = BVH_LAYOUT_OPTIX;
        else if (bvh->params.bvh_layout == BVH_LAYOUT_MULTI_OPTIX_EMBREE)
          params.bvh_layout = sub.device->info.type == DEVICE_OPTIX ? BVH_LAYOUT_OPTIX :
                                                                      BVH_LAYOUT_EMBREE;

        /* Skip building a bottom level acceleration structure for non-instanced geometry on Embree
         * (since they are put into the top level directly, see bvh_embree.cpp) */
        if (!params.top_level && params.bvh_layout == BVH_LAYOUT_EMBREE &&
            !bvh->geometry[0]->is_instanced()) {
          i++;
          continue;
        }

        bvh_multi->sub_bvhs[i] = BVH::create(params, bvh->geometry, bvh->objects, sub.device);
      }

      sub.device->build_bvh(bvh_multi->sub_bvhs[i], progress, refit);
      i++;
    }

    /* Change geomtry BVH pointers back to the multi BVH */
    for (size_t k = 0; k < bvh->geometry.size(); ++k) {
      bvh->geometry[k]->bvh = geom_bvhs[k];
    }
  }

  virtual void *osl_memory() override
  {
    if (devices.size() > 1) {
      return NULL;
    }
    return devices.front().device->osl_memory();
  }

  bool is_resident(device_ptr key, Device *sub_device) override
  {
    foreach (SubDevice &sub, devices) {
      if (sub.device == sub_device) {
        return find_matching_mem_device(key, sub)->device == sub_device;
      }
    }
    return false;
  }

  SubDevice *find_matching_mem_device(device_ptr key, SubDevice &sub)
  {
    assert(key != 0 && (sub.peer_island_index >= 0 || sub.ptr_map.find(key) != sub.ptr_map.end()));

    /* Get the memory owner of this key (first try current device, then peer devices) */
    SubDevice *owner_sub = &sub;
    if (owner_sub->ptr_map.find(key) == owner_sub->ptr_map.end()) {
      foreach (SubDevice *island_sub, peer_islands[sub.peer_island_index]) {
        if (island_sub != owner_sub &&
            island_sub->ptr_map.find(key) != island_sub->ptr_map.end()) {
          owner_sub = island_sub;
        }
      }
    }
    return owner_sub;
  }

  SubDevice *find_suitable_mem_device(device_ptr key, const vector<SubDevice *> &island)
  {
    assert(!island.empty());

    /* Get the memory owner of this key or the device with the lowest memory usage when new */
    SubDevice *owner_sub = island.front();
    foreach (SubDevice *island_sub, island) {
      if (key ? (island_sub->ptr_map.find(key) != island_sub->ptr_map.end()) :
                (island_sub->device->stats.mem_used < owner_sub->device->stats.mem_used)) {
        owner_sub = island_sub;
      }
    }
    return owner_sub;
  }

  inline device_ptr find_matching_mem(device_ptr key, SubDevice &sub)
  {
    return find_matching_mem_device(key, sub)->ptr_map[key];
  }

  void mem_alloc(device_memory &mem) override
  {
    device_ptr key = unique_key++;

    if (mem.type == MEM_PIXELS) {
      /* Always allocate pixels memory on all devices
       * This is necessary to ensure PBOs are registered everywhere, which FILM_CONVERT uses */
      foreach (SubDevice &sub, devices) {
        mem.device = sub.device;
        mem.device_pointer = 0;
        mem.device_size = 0;

        sub.device->mem_alloc(mem);
        sub.ptr_map[key] = mem.device_pointer;
      }
    }
    else {
      assert(mem.type == MEM_READ_ONLY || mem.type == MEM_READ_WRITE ||
             mem.type == MEM_DEVICE_ONLY);
      /* The remaining memory types can be distributed across devices */
      foreach (const vector<SubDevice *> &island, peer_islands) {
        SubDevice *owner_sub = find_suitable_mem_device(key, island);
        mem.device = owner_sub->device;
        mem.device_pointer = 0;
        mem.device_size = 0;

        owner_sub->device->mem_alloc(mem);
        owner_sub->ptr_map[key] = mem.device_pointer;
      }
    }

    mem.device = this;
    mem.device_pointer = key;
    stats.mem_alloc(mem.device_size);
  }

  void mem_copy_to(device_memory &mem) override
  {
    device_ptr existing_key = mem.device_pointer;
    device_ptr key = (existing_key) ? existing_key : unique_key++;
    size_t existing_size = mem.device_size;

    /* The tile buffers are allocated on each device (see below), so copy to all of them */
    if (strcmp(mem.name, "RenderBuffers") == 0) {
      foreach (SubDevice &sub, devices) {
        mem.device = sub.device;
        mem.device_pointer = (existing_key) ? sub.ptr_map[existing_key] : 0;
        mem.device_size = existing_size;

        sub.device->mem_copy_to(mem);
        sub.ptr_map[key] = mem.device_pointer;
      }
    }
    else {
      foreach (const vector<SubDevice *> &island, peer_islands) {
        SubDevice *owner_sub = find_suitable_mem_device(existing_key, island);
        mem.device = owner_sub->device;
        mem.device_pointer = (existing_key) ? owner_sub->ptr_map[existing_key] : 0;
        mem.device_size = existing_size;

        owner_sub->device->mem_copy_to(mem);
        owner_sub->ptr_map[key] = mem.device_pointer;

        if (mem.type == MEM_GLOBAL || mem.type == MEM_TEXTURE) {
          /* Need to create texture objects and update pointer in kernel globals on all devices */
          foreach (SubDevice *island_sub, island) {
            if (island_sub != owner_sub) {
              island_sub->device->mem_copy_to(mem);
            }
          }
        }
      }
    }

    mem.device = this;
    mem.device_pointer = key;
    stats.mem_alloc(mem.device_size - existing_size);
  }

  void mem_copy_from(device_memory &mem, int y, int w, int h, int elem) override
  {
    device_ptr key = mem.device_pointer;
    int i = 0, sub_h = h / devices.size();

    foreach (SubDevice &sub, devices) {
      int sy = y + i * sub_h;
      int sh = (i == (int)devices.size() - 1) ? h - sub_h * i : sub_h;

      SubDevice *owner_sub = find_matching_mem_device(key, sub);
      mem.device = owner_sub->device;
      mem.device_pointer = owner_sub->ptr_map[key];

      owner_sub->device->mem_copy_from(mem, sy, w, sh, elem);
      i++;
    }

    mem.device = this;
    mem.device_pointer = key;
  }

  void mem_zero(device_memory &mem) override
  {
    device_ptr existing_key = mem.device_pointer;
    device_ptr key = (existing_key) ? existing_key : unique_key++;
    size_t existing_size = mem.device_size;

    /* This is a hack to only allocate the tile buffers on denoising devices
     * Similarly the tile buffers also need to be allocated separately on all devices so any
     * overlap rendered for denoising does not interfere with each other */
    if (strcmp(mem.name, "RenderBuffers") == 0) {
      vector<device_ptr> device_pointers;
      device_pointers.reserve(devices.size());

      foreach (SubDevice &sub, devices) {
        mem.device = sub.device;
        mem.device_pointer = (existing_key) ? sub.ptr_map[existing_key] : 0;
        mem.device_size = existing_size;

        sub.device->mem_zero(mem);
        sub.ptr_map[key] = mem.device_pointer;

        device_pointers.push_back(mem.device_pointer);
      }
      foreach (SubDevice &sub, denoising_devices) {
        if (matching_rendering_and_denoising_devices) {
          sub.ptr_map[key] = device_pointers.front();
          device_pointers.erase(device_pointers.begin());
        }
        else {
          mem.device = sub.device;
          mem.device_pointer = (existing_key) ? sub.ptr_map[existing_key] : 0;
          mem.device_size = existing_size;

          sub.device->mem_zero(mem);
          sub.ptr_map[key] = mem.device_pointer;
        }
      }
    }
    else {
      foreach (const vector<SubDevice *> &island, peer_islands) {
        SubDevice *owner_sub = find_suitable_mem_device(existing_key, island);
        mem.device = owner_sub->device;
        mem.device_pointer = (existing_key) ? owner_sub->ptr_map[existing_key] : 0;
        mem.device_size = existing_size;

        owner_sub->device->mem_zero(mem);
        owner_sub->ptr_map[key] = mem.device_pointer;
      }
    }

    mem.device = this;
    mem.device_pointer = key;
    stats.mem_alloc(mem.device_size - existing_size);
  }

  void mem_free(device_memory &mem) override
  {
    device_ptr key = mem.device_pointer;
    size_t existing_size = mem.device_size;

    /* Free memory that was allocated for all devices (see above) on each device */
    if (strcmp(mem.name, "RenderBuffers") == 0 || mem.type == MEM_PIXELS) {
      foreach (SubDevice &sub, devices) {
        mem.device = sub.device;
        mem.device_pointer = sub.ptr_map[key];
        mem.device_size = existing_size;

        sub.device->mem_free(mem);
        sub.ptr_map.erase(sub.ptr_map.find(key));
      }
      foreach (SubDevice &sub, denoising_devices) {
        if (matching_rendering_and_denoising_devices) {
          sub.ptr_map.erase(key);
        }
        else {
          mem.device = sub.device;
          mem.device_pointer = sub.ptr_map[key];
          mem.device_size = existing_size;

          sub.device->mem_free(mem);
          sub.ptr_map.erase(sub.ptr_map.find(key));
        }
      }
    }
    else {
      foreach (const vector<SubDevice *> &island, peer_islands) {
        SubDevice *owner_sub = find_matching_mem_device(key, *island.front());
        mem.device = owner_sub->device;
        mem.device_pointer = owner_sub->ptr_map[key];
        mem.device_size = existing_size;

        owner_sub->device->mem_free(mem);
        owner_sub->ptr_map.erase(owner_sub->ptr_map.find(key));

        if (mem.type == MEM_TEXTURE) {
          /* Free texture objects on all devices */
          foreach (SubDevice *island_sub, island) {
            if (island_sub != owner_sub) {
              island_sub->device->mem_free(mem);
            }
          }
        }
      }
    }

    mem.device = this;
    mem.device_pointer = 0;
    mem.device_size = 0;
    stats.mem_free(existing_size);
  }

  void const_copy_to(const char *name, void *host, size_t size) override
  {
    foreach (SubDevice &sub, devices)
      sub.device->const_copy_to(name, host, size);
  }

  void draw_pixels(device_memory &rgba,
                   int y,
                   int w,
                   int h,
                   int width,
                   int height,
                   int dx,
                   int dy,
                   int dw,
                   int dh,
                   bool transparent,
                   const DeviceDrawParams &draw_params) override
  {
    assert(rgba.type == MEM_PIXELS);

    device_ptr key = rgba.device_pointer;
    int i = 0, sub_h = h / devices.size();
    int sub_height = height / devices.size();

    foreach (SubDevice &sub, devices) {
      int sy = y + i * sub_h;
      int sh = (i == (int)devices.size() - 1) ? h - sub_h * i : sub_h;
      int sheight = (i == (int)devices.size() - 1) ? height - sub_height * i : sub_height;
      int sdy = dy + i * sub_height;
      /* adjust math for w/width */

      rgba.device_pointer = sub.ptr_map[key];
      sub.device->draw_pixels(
          rgba, sy, w, sh, width, sheight, dx, sdy, dw, dh, transparent, draw_params);
      i++;
    }

    rgba.device_pointer = key;
  }

  void map_tile(Device *sub_device, RenderTile &tile) override
  {
    if (!tile.buffer) {
      return;
    }

    foreach (SubDevice &sub, devices) {
      if (sub.device == sub_device) {
        tile.buffer = find_matching_mem(tile.buffer, sub);
        return;
      }
    }

    foreach (SubDevice &sub, denoising_devices) {
      if (sub.device == sub_device) {
        tile.buffer = sub.ptr_map[tile.buffer];
        return;
      }
    }
  }

  int device_number(Device *sub_device) override
  {
    int i = 0;

    foreach (SubDevice &sub, devices) {
      if (sub.device == sub_device)
        return i;
      i++;
    }

    foreach (SubDevice &sub, denoising_devices) {
      if (sub.device == sub_device)
        return i;
      i++;
    }

    return -1;
  }

  void map_neighbor_tiles(Device *sub_device, RenderTileNeighbors &neighbors) override
  {
    for (int i = 0; i < RenderTileNeighbors::SIZE; i++) {
      RenderTile &tile = neighbors.tiles[i];

      if (!tile.buffers) {
        continue;
      }

      device_vector<float> &mem = tile.buffers->buffer;
      tile.buffer = mem.device_pointer;

      if (mem.device == this && matching_rendering_and_denoising_devices) {
        /* Skip unnecessary copies in viewport mode (buffer covers the
         * whole image), but still need to fix up the tile device pointer. */
        map_tile(sub_device, tile);
        continue;
      }

      /* If the tile was rendered on another device, copy its memory to
       * to the current device now, for the duration of the denoising task.
       * Note that this temporarily modifies the RenderBuffers and calls
       * the device, so this function is not thread safe. */
      if (mem.device != sub_device) {
        /* Only copy from device to host once. This is faster, but
         * also required for the case where a CPU thread is denoising
         * a tile rendered on the GPU. In that case we have to avoid
         * overwriting the buffer being de-noised by the CPU thread. */
        if (!tile.buffers->map_neighbor_copied) {
          tile.buffers->map_neighbor_copied = true;
          mem.copy_from_device();
        }

        if (mem.device == this) {
          /* Can re-use memory if tile is already allocated on the sub device. */
          map_tile(sub_device, tile);
          mem.swap_device(sub_device, mem.device_size, tile.buffer);
        }
        else {
          mem.swap_device(sub_device, 0, 0);
        }

        mem.copy_to_device();

        tile.buffer = mem.device_pointer;
        tile.device_size = mem.device_size;

        mem.restore_device();
      }
    }
  }

  void unmap_neighbor_tiles(Device *sub_device, RenderTileNeighbors &neighbors) override
  {
    RenderTile &target_tile = neighbors.target;
    device_vector<float> &mem = target_tile.buffers->buffer;

    if (mem.device == this && matching_rendering_and_denoising_devices) {
      return;
    }

    /* Copy denoised result back to the host. */
    mem.swap_device(sub_device, target_tile.device_size, target_tile.buffer);
    mem.copy_from_device();
    mem.restore_device();

    /* Copy denoised result to the original device. */
    mem.copy_to_device();

    for (int i = 0; i < RenderTileNeighbors::SIZE; i++) {
      RenderTile &tile = neighbors.tiles[i];
      if (!tile.buffers) {
        continue;
      }

      device_vector<float> &mem = tile.buffers->buffer;

      if (mem.device != sub_device && mem.device != this) {
        /* Free up memory again if it was allocated for the copy above. */
        mem.swap_device(sub_device, tile.device_size, tile.buffer);
        sub_device->mem_free(mem);
        mem.restore_device();
      }
    }
  }

  int get_split_task_count(DeviceTask &task) override
  {
    int total_tasks = 0;
    list<DeviceTask> tasks;
    task.split(tasks, devices.size());
    foreach (SubDevice &sub, devices) {
      if (!tasks.empty()) {
        DeviceTask subtask = tasks.front();
        tasks.pop_front();

        total_tasks += sub.device->get_split_task_count(subtask);
      }
    }
    return total_tasks;
  }

  void task_add(DeviceTask &task) override
  {
    list<SubDevice> task_devices = devices;
    if (!denoising_devices.empty()) {
      if (task.type == DeviceTask::DENOISE_BUFFER) {
        /* Denoising tasks should be redirected to the denoising devices entirely. */
        task_devices = denoising_devices;
      }
      else if (task.type == DeviceTask::RENDER && (task.tile_types & RenderTile::DENOISE)) {
        const uint tile_types = task.tile_types;
        /* For normal rendering tasks only redirect the denoising part to the denoising devices.
         * Do not need to split the task here, since they all run through 'acquire_tile'. */
        task.tile_types = RenderTile::DENOISE;
        foreach (SubDevice &sub, denoising_devices) {
          sub.device->task_add(task);
        }
        /* Rendering itself should still be executed on the rendering devices. */
        task.tile_types = tile_types ^ RenderTile::DENOISE;
      }
    }

    list<DeviceTask> tasks;
    task.split(tasks, task_devices.size());

    foreach (SubDevice &sub, task_devices) {
      if (!tasks.empty()) {
        DeviceTask subtask = tasks.front();
        tasks.pop_front();

        if (task.buffer)
          subtask.buffer = find_matching_mem(task.buffer, sub);
        if (task.rgba_byte)
          subtask.rgba_byte = sub.ptr_map[task.rgba_byte];
        if (task.rgba_half)
          subtask.rgba_half = sub.ptr_map[task.rgba_half];
        if (task.shader_input)
          subtask.shader_input = find_matching_mem(task.shader_input, sub);
        if (task.shader_output)
          subtask.shader_output = find_matching_mem(task.shader_output, sub);

        sub.device->task_add(subtask);

        if (task.buffers && task.buffers->buffer.device == this) {
          /* Synchronize access to RenderBuffers, since 'map_neighbor_tiles' is not thread-safe. */
          sub.device->task_wait();
        }
      }
    }
  }

  void task_wait() override
  {
    foreach (SubDevice &sub, devices)
      sub.device->task_wait();
    foreach (SubDevice &sub, denoising_devices)
      sub.device->task_wait();
  }

  void task_cancel() override
  {
    foreach (SubDevice &sub, devices)
      sub.device->task_cancel();
    foreach (SubDevice &sub, denoising_devices)
      sub.device->task_cancel();
  }
};

Device *device_multi_create(DeviceInfo &info, Stats &stats, Profiler &profiler, bool background)
{
  return new MultiDevice(info, stats, profiler, background);
}

CCL_NAMESPACE_END