Welcome to mirror list, hosted at ThFree Co, Russian Federation.

obvh_volume_all.h « bvh « kernel « cycles « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 87216127ddbb18c668c289718662cb28ffac4a93 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
/*
 * Copyright 2011-2013 Blender Foundation
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/* This is a template BVH traversal function for volumes, where
 * various features can be enabled/disabled. This way we can compile optimized
 * versions for each case without new features slowing things down.
 *
 * BVH_INSTANCING: object instancing
 * BVH_MOTION: motion blur rendering
 *
 */

#if BVH_FEATURE(BVH_HAIR)
#  define NODE_INTERSECT obvh_node_intersect
#else
#  define NODE_INTERSECT obvh_aligned_node_intersect
#endif

ccl_device uint BVH_FUNCTION_FULL_NAME(OBVH)(KernelGlobals *kg,
                                             const Ray *ray,
                                             Intersection *isect_array,
                                             const uint max_hits,
                                             const uint visibility)
{
	/* Traversal stack in CUDA thread-local memory. */
	OBVHStackItem traversal_stack[BVH_OSTACK_SIZE];
	traversal_stack[0].addr = ENTRYPOINT_SENTINEL;

	/* Traversal variables in registers. */
	int stack_ptr = 0;
	int node_addr = kernel_data.bvh.root;

	/* Ray parameters in registers. */
	const float tmax = ray->t;
	float3 P = ray->P;
	float3 dir = bvh_clamp_direction(ray->D);
	float3 idir = bvh_inverse_direction(dir);
	int object = OBJECT_NONE;
	float isect_t = tmax;

#if BVH_FEATURE(BVH_MOTION)
	Transform ob_itfm;
#endif

	uint num_hits = 0;
	isect_array->t = tmax;

#if BVH_FEATURE(BVH_INSTANCING)
	int num_hits_in_instance = 0;
#endif

	avxf tnear(0.0f), tfar(isect_t);
#if BVH_FEATURE(BVH_HAIR)
	avx3f dir4(avxf(dir.x), avxf(dir.y), avxf(dir.z));
#endif
	avx3f idir4(avxf(idir.x), avxf(idir.y), avxf(idir.z));

#ifdef __KERNEL_AVX2__
	float3 P_idir = P*idir;
	avx3f P_idir4(P_idir.x, P_idir.y, P_idir.z);
#endif
#if BVH_FEATURE(BVH_HAIR) || !defined(__KERNEL_AVX2__)
	avx3f org4(avxf(P.x), avxf(P.y), avxf(P.z));
#endif

	/* Offsets to select the side that becomes the lower or upper bound. */
	int near_x, near_y, near_z;
	int far_x, far_y, far_z;
	obvh_near_far_idx_calc(idir,
	                       &near_x, &near_y, &near_z,
	                       &far_x, &far_y, &far_z);

	/* Traversal loop. */
	do {
		do {
			/* Traverse internal nodes. */
			while(node_addr >= 0 && node_addr != ENTRYPOINT_SENTINEL) {
				float4 inodes = kernel_tex_fetch(__bvh_nodes, node_addr+0);

#ifdef __VISIBILITY_FLAG__
				if((__float_as_uint(inodes.x) & visibility) == 0) {
					/* Pop. */
					node_addr = traversal_stack[stack_ptr].addr;
					--stack_ptr;
					continue;
				}
#endif

				avxf dist;
				int child_mask = NODE_INTERSECT(kg,
					                            tnear,
					                            tfar,
#ifdef __KERNEL_AVX2__
					                            P_idir4,
#endif
#if BVH_FEATURE(BVH_HAIR) || !defined(__KERNEL_AVX2__)
					                            org4,
#endif
#if BVH_FEATURE(BVH_HAIR)
					                            dir4,
#endif
					                            idir4,
					                            near_x, near_y, near_z,
					                            far_x, far_y, far_z,
					                            node_addr,
					                            &dist);

				if(child_mask != 0) {
					avxf cnodes;
#if BVH_FEATURE(BVH_HAIR)
					if(__float_as_uint(inodes.x) & PATH_RAY_NODE_UNALIGNED) {
						cnodes = kernel_tex_fetch_avxf(__bvh_nodes, node_addr+26);
					}
					else
#endif
					{
						cnodes = kernel_tex_fetch_avxf(__bvh_nodes, node_addr+14);
					}

					/* One child is hit, continue with that child. */
					int r = __bscf(child_mask);
					if(child_mask == 0) {
						node_addr = __float_as_int(cnodes[r]);
						continue;
					}

					/* Two children are hit, push far child, and continue with
					 * closer child.
					 */
					int c0 = __float_as_int(cnodes[r]);
					float d0 = ((float*)&dist)[r];
					r = __bscf(child_mask);
					int c1 = __float_as_int(cnodes[r]);
					float d1 = ((float*)&dist)[r];
					if(child_mask == 0) {
						if(d1 < d0) {
							node_addr = c1;
							++stack_ptr;
							kernel_assert(stack_ptr < BVH_OSTACK_SIZE);
							traversal_stack[stack_ptr].addr = c0;
							traversal_stack[stack_ptr].dist = d0;
							continue;
						}
						else {
							node_addr = c0;
							++stack_ptr;
							kernel_assert(stack_ptr < BVH_OSTACK_SIZE);
							traversal_stack[stack_ptr].addr = c1;
							traversal_stack[stack_ptr].dist = d1;
							continue;
						}
					}

					/* Here starts the slow path for 3 or 4 hit children. We push
					 * all nodes onto the stack to sort them there.
					 */
					++stack_ptr;
					kernel_assert(stack_ptr < BVH_OSTACK_SIZE);
					traversal_stack[stack_ptr].addr = c1;
					traversal_stack[stack_ptr].dist = d1;
					++stack_ptr;
					kernel_assert(stack_ptr < BVH_OSTACK_SIZE);
					traversal_stack[stack_ptr].addr = c0;
					traversal_stack[stack_ptr].dist = d0;

					/* Three children are hit, push all onto stack and sort 3
					 * stack items, continue with closest child.
					 */
					r = __bscf(child_mask);
					int c2 = __float_as_int(cnodes[r]);
					float d2 = ((float*)&dist)[r];
					if(child_mask == 0) {
						++stack_ptr;
						kernel_assert(stack_ptr < BVH_OSTACK_SIZE);
						traversal_stack[stack_ptr].addr = c2;
						traversal_stack[stack_ptr].dist = d2;
						obvh_stack_sort(&traversal_stack[stack_ptr],
						                &traversal_stack[stack_ptr - 1],
						                &traversal_stack[stack_ptr - 2]);
						node_addr = traversal_stack[stack_ptr].addr;
						--stack_ptr;
						continue;
					}

					/* Four children are hit, push all onto stack and sort 4
					 * stack items, continue with closest child.
					 */
					r = __bscf(child_mask);
					int c3 = __float_as_int(cnodes[r]);
					float d3 = ((float*)&dist)[r];
					if(child_mask == 0) {
						++stack_ptr;
						kernel_assert(stack_ptr < BVH_OSTACK_SIZE);
						traversal_stack[stack_ptr].addr = c3;
						traversal_stack[stack_ptr].dist = d3;
						++stack_ptr;
						kernel_assert(stack_ptr < BVH_OSTACK_SIZE);
						traversal_stack[stack_ptr].addr = c2;
						traversal_stack[stack_ptr].dist = d2;
						obvh_stack_sort(&traversal_stack[stack_ptr],
						                &traversal_stack[stack_ptr - 1],
						                &traversal_stack[stack_ptr - 2],
						                &traversal_stack[stack_ptr - 3]);
						node_addr = traversal_stack[stack_ptr].addr;
						--stack_ptr;
						continue;
					}

					++stack_ptr;
					kernel_assert(stack_ptr < BVH_OSTACK_SIZE);
					traversal_stack[stack_ptr].addr = c3;
					traversal_stack[stack_ptr].dist = d3;
					++stack_ptr;
					kernel_assert(stack_ptr < BVH_OSTACK_SIZE);
					traversal_stack[stack_ptr].addr = c2;
					traversal_stack[stack_ptr].dist = d2;

					/* Five children are hit, push all onto stack and sort 5
					 * stack items, continue with closest child.
					 */
					r = __bscf(child_mask);
					int c4 = __float_as_int(cnodes[r]);
					float d4 = ((float*)&dist)[r];
					if(child_mask == 0) {
						++stack_ptr;
						kernel_assert(stack_ptr < BVH_OSTACK_SIZE);
						traversal_stack[stack_ptr].addr = c4;
						traversal_stack[stack_ptr].dist = d4;
						obvh_stack_sort(&traversal_stack[stack_ptr],
						                &traversal_stack[stack_ptr - 1],
						                &traversal_stack[stack_ptr - 2],
						                &traversal_stack[stack_ptr - 3],
						                &traversal_stack[stack_ptr - 4]);
						node_addr = traversal_stack[stack_ptr].addr;
						--stack_ptr;
						continue;
					}

					/* Six children are hit, push all onto stack and sort 6
					 * stack items, continue with closest child.
					 */
					r = __bscf(child_mask);
					int c5 = __float_as_int(cnodes[r]);
					float d5 = ((float*)&dist)[r];
					if(child_mask == 0) {
						++stack_ptr;
						kernel_assert(stack_ptr < BVH_OSTACK_SIZE);
						traversal_stack[stack_ptr].addr = c5;
						traversal_stack[stack_ptr].dist = d5;
						++stack_ptr;
						kernel_assert(stack_ptr < BVH_OSTACK_SIZE);
						traversal_stack[stack_ptr].addr = c4;
						traversal_stack[stack_ptr].dist = d4;
						obvh_stack_sort(&traversal_stack[stack_ptr],
						                &traversal_stack[stack_ptr - 1],
						                &traversal_stack[stack_ptr - 2],
						                &traversal_stack[stack_ptr - 3],
						                &traversal_stack[stack_ptr - 4],
						                &traversal_stack[stack_ptr - 5]);
						node_addr = traversal_stack[stack_ptr].addr;
						--stack_ptr;
						continue;
					}

					++stack_ptr;
					kernel_assert(stack_ptr < BVH_OSTACK_SIZE);
					traversal_stack[stack_ptr].addr = c5;
					traversal_stack[stack_ptr].dist = d5;
					++stack_ptr;
					kernel_assert(stack_ptr < BVH_OSTACK_SIZE);
					traversal_stack[stack_ptr].addr = c4;
					traversal_stack[stack_ptr].dist = d4;

					/* Seven children are hit, push all onto stack and sort 7
					 * stack items, continue with closest child.
					 */
					r = __bscf(child_mask);
					int c6 = __float_as_int(cnodes[r]);
					float d6 = ((float*)&dist)[r];
					if(child_mask == 0) {
						++stack_ptr;
						kernel_assert(stack_ptr < BVH_OSTACK_SIZE);
						traversal_stack[stack_ptr].addr = c6;
						traversal_stack[stack_ptr].dist = d6;
						obvh_stack_sort(&traversal_stack[stack_ptr],
						                &traversal_stack[stack_ptr - 1],
						                &traversal_stack[stack_ptr - 2],
						                &traversal_stack[stack_ptr - 3],
						                &traversal_stack[stack_ptr - 4],
						                &traversal_stack[stack_ptr - 5],
						                &traversal_stack[stack_ptr - 6]);
						node_addr = traversal_stack[stack_ptr].addr;
						--stack_ptr;
						continue;
					}

					/* Eight children are hit, push all onto stack and sort 8
					 * stack items, continue with closest child.
					 */
					r = __bscf(child_mask);
					int c7 = __float_as_int(cnodes[r]);
					float d7 = ((float*)&dist)[r];
					++stack_ptr;
					kernel_assert(stack_ptr < BVH_OSTACK_SIZE);
					traversal_stack[stack_ptr].addr = c7;
					traversal_stack[stack_ptr].dist = d7;
					++stack_ptr;
					kernel_assert(stack_ptr < BVH_OSTACK_SIZE);
					traversal_stack[stack_ptr].addr = c6;
					traversal_stack[stack_ptr].dist = d6;
					obvh_stack_sort(&traversal_stack[stack_ptr],
					                &traversal_stack[stack_ptr - 1],
					                &traversal_stack[stack_ptr - 2],
					                &traversal_stack[stack_ptr - 3],
					                &traversal_stack[stack_ptr - 4],
					                &traversal_stack[stack_ptr - 5],
					                &traversal_stack[stack_ptr - 6],
					                &traversal_stack[stack_ptr - 7]);
					node_addr = traversal_stack[stack_ptr].addr;
					--stack_ptr;
					continue;
				}

				node_addr = traversal_stack[stack_ptr].addr;
				--stack_ptr;
			}

			/* If node is leaf, fetch triangle list. */
			if(node_addr < 0) {
				float4 leaf = kernel_tex_fetch(__bvh_leaf_nodes, (-node_addr-1));

				if((__float_as_uint(leaf.z) & visibility) == 0) {
					/* Pop. */
					node_addr = traversal_stack[stack_ptr].addr;
					--stack_ptr;
					continue;
				}

				int prim_addr = __float_as_int(leaf.x);

#if BVH_FEATURE(BVH_INSTANCING)
				if(prim_addr >= 0) {
#endif
					int prim_addr2 = __float_as_int(leaf.y);
					const uint type = __float_as_int(leaf.w);
					const uint p_type = type & PRIMITIVE_ALL;
					bool hit;

					/* Pop. */
					node_addr = traversal_stack[stack_ptr].addr;
					--stack_ptr;

					/* Primitive intersection. */
					switch(p_type) {
						case PRIMITIVE_TRIANGLE: {
							for(; prim_addr < prim_addr2; prim_addr++) {
								kernel_assert(kernel_tex_fetch(__prim_type, prim_addr) == type);
								/* Only primitives from volume object. */
								uint tri_object = (object == OBJECT_NONE)? kernel_tex_fetch(__prim_object, prim_addr): object;
								int object_flag = kernel_tex_fetch(__object_flag, tri_object);
								if((object_flag & SD_OBJECT_HAS_VOLUME) == 0) {
									continue;
								}
								/* Intersect ray against primitive. */
								hit = triangle_intersect(kg, isect_array, P, dir, visibility, object, prim_addr);
								if(hit) {
									/* Move on to next entry in intersections array. */
									isect_array++;
									num_hits++;
#if BVH_FEATURE(BVH_INSTANCING)
									num_hits_in_instance++;
#endif
									isect_array->t = isect_t;
									if(num_hits == max_hits) {
#if BVH_FEATURE(BVH_INSTANCING)
#  if BVH_FEATURE(BVH_MOTION)
										float t_fac = 1.0f / len(transform_direction(&ob_itfm, dir));
#  else
										Transform itfm = object_fetch_transform(kg, object, OBJECT_INVERSE_TRANSFORM);
										float t_fac = 1.0f / len(transform_direction(&itfm, dir));
#  endif
										for(int i = 0; i < num_hits_in_instance; i++) {
											(isect_array-i-1)->t *= t_fac;
										}
#endif  /* BVH_FEATURE(BVH_INSTANCING) */
										return num_hits;
									}
								}
							}
							break;
						}
#if BVH_FEATURE(BVH_MOTION)
						case PRIMITIVE_MOTION_TRIANGLE: {
							for(; prim_addr < prim_addr2; prim_addr++) {
								kernel_assert(kernel_tex_fetch(__prim_type, prim_addr) == type);
								/* Only primitives from volume object. */
								uint tri_object = (object == OBJECT_NONE)? kernel_tex_fetch(__prim_object, prim_addr): object;
								int object_flag = kernel_tex_fetch(__object_flag, tri_object);
								if((object_flag & SD_OBJECT_HAS_VOLUME) == 0) {
									continue;
								}
								/* Intersect ray against primitive. */
								hit = motion_triangle_intersect(kg, isect_array, P, dir, ray->time, visibility, object, prim_addr);
								if(hit) {
									/* Move on to next entry in intersections array. */
									isect_array++;
									num_hits++;
#  if BVH_FEATURE(BVH_INSTANCING)
									num_hits_in_instance++;
#  endif
									isect_array->t = isect_t;
									if(num_hits == max_hits) {
#  if BVH_FEATURE(BVH_INSTANCING)
#    if BVH_FEATURE(BVH_MOTION)
										float t_fac = 1.0f / len(transform_direction(&ob_itfm, dir));
#    else
										Transform itfm = object_fetch_transform(kg, object, OBJECT_INVERSE_TRANSFORM);
										float t_fac = 1.0f / len(transform_direction(&itfm, dir));
#    endif
										for(int i = 0; i < num_hits_in_instance; i++) {
											(isect_array-i-1)->t *= t_fac;
										}
#  endif  /* BVH_FEATURE(BVH_INSTANCING) */
										return num_hits;
									}
								}
							}
							break;
						}
#endif
					}
				}
#if BVH_FEATURE(BVH_INSTANCING)
				else {
					/* Instance push. */
					object = kernel_tex_fetch(__prim_object, -prim_addr-1);
					int object_flag = kernel_tex_fetch(__object_flag, object);
					if(object_flag & SD_OBJECT_HAS_VOLUME) {
#  if BVH_FEATURE(BVH_MOTION)
						isect_t = bvh_instance_motion_push(kg, object, ray, &P, &dir, &idir, isect_t, &ob_itfm);
#  else
						isect_t = bvh_instance_push(kg, object, ray, &P, &dir, &idir, isect_t);
#  endif

						obvh_near_far_idx_calc(idir,
						                       &near_x, &near_y, &near_z,
						                       &far_x, &far_y, &far_z);
						tfar = avxf(isect_t);
						idir4 = avx3f(avxf(idir.x), avxf(idir.y), avxf(idir.z));
#  if BVH_FEATURE(BVH_HAIR)
						dir4 = avx3f(avxf(dir.x), avxf(dir.y), avxf(dir.z));
#  endif
#  ifdef __KERNEL_AVX2__
						P_idir = P*idir;
						P_idir4 = avx3f(P_idir.x, P_idir.y, P_idir.z);
#  endif
#  if BVH_FEATURE(BVH_HAIR) || !defined(__KERNEL_AVX2__)
						org4 = avx3f(avxf(P.x), avxf(P.y), avxf(P.z));
#  endif

						num_hits_in_instance = 0;
						isect_array->t = isect_t;

						++stack_ptr;
						kernel_assert(stack_ptr < BVH_OSTACK_SIZE);
						traversal_stack[stack_ptr].addr = ENTRYPOINT_SENTINEL;

						node_addr = kernel_tex_fetch(__object_node, object);
					}
					else {
						/* Pop. */
						object = OBJECT_NONE;
						node_addr = traversal_stack[stack_ptr].addr;
						--stack_ptr;
					}
				}
			}
#endif  /* FEATURE(BVH_INSTANCING) */
		} while(node_addr != ENTRYPOINT_SENTINEL);

#if BVH_FEATURE(BVH_INSTANCING)
		if(stack_ptr >= 0) {
			kernel_assert(object != OBJECT_NONE);

			/* Instance pop. */
			if(num_hits_in_instance) {
				float t_fac;
#  if BVH_FEATURE(BVH_MOTION)
				bvh_instance_motion_pop_factor(kg, object, ray, &P, &dir, &idir, &t_fac, &ob_itfm);
#  else
				bvh_instance_pop_factor(kg, object, ray, &P, &dir, &idir, &t_fac);
#  endif
				/* Scale isect->t to adjust for instancing. */
				for(int i = 0; i < num_hits_in_instance; i++) {
					(isect_array-i-1)->t *= t_fac;
				}
			}
			else {
#  if BVH_FEATURE(BVH_MOTION)
				bvh_instance_motion_pop(kg, object, ray, &P, &dir, &idir, FLT_MAX, &ob_itfm);
#  else
				bvh_instance_pop(kg, object, ray, &P, &dir, &idir, FLT_MAX);
#  endif
			}

			isect_t = tmax;
			isect_array->t = isect_t;

			obvh_near_far_idx_calc(idir,
			                       &near_x, &near_y, &near_z,
			                       &far_x, &far_y, &far_z);
			tfar = avxf(isect_t);
#  if BVH_FEATURE(BVH_HAIR)
			dir4 = avx3f(avxf(dir.x), avxf(dir.y), avxf(dir.z));
#  endif
			idir4 = avx3f(avxf(idir.x), avxf(idir.y), avxf(idir.z));
#  ifdef __KERNEL_AVX2__
			P_idir = P*idir;
			P_idir4 = avx3f(P_idir.x, P_idir.y, P_idir.z);
#  endif
#  if BVH_FEATURE(BVH_HAIR) || !defined(__KERNEL_AVX2__)
			org4 = avx3f(avxf(P.x), avxf(P.y), avxf(P.z));
#  endif

			object = OBJECT_NONE;
			node_addr = traversal_stack[stack_ptr].addr;
			--stack_ptr;
		}
#endif  /* FEATURE(BVH_INSTANCING) */
	} while(node_addr != ENTRYPOINT_SENTINEL);

	return num_hits;
}

#undef NODE_INTERSECT