Welcome to mirror list, hosted at ThFree Co, Russian Federation.

shadow_all.h « bvh « kernel « cycles « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: b31ba479e4fc0f75dec623db3321f342edb15fa4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
/* SPDX-License-Identifier: Apache-2.0
 * Adapted from code Copyright 2009-2010 NVIDIA Corporation,
 * and code copyright 2009-2012 Intel Corporation
 *
 * Modifications Copyright 2011-2022 Blender Foundation. */

#if BVH_FEATURE(BVH_HAIR)
#  define NODE_INTERSECT bvh_node_intersect
#else
#  define NODE_INTERSECT bvh_aligned_node_intersect
#endif

/* This is a template BVH traversal function, where various features can be
 * enabled/disabled. This way we can compile optimized versions for each case
 * without new features slowing things down.
 *
 * BVH_HAIR: hair curve rendering
 * BVH_POINTCLOUD: point cloud rendering
 * BVH_MOTION: motion blur rendering
 */

#ifndef __KERNEL_GPU__
ccl_device
#else
ccl_device_inline
#endif
    bool BVH_FUNCTION_FULL_NAME(BVH)(KernelGlobals kg,
                                     ccl_private const Ray *ray,
                                     IntegratorShadowState state,
                                     const uint visibility,
                                     const uint max_hits,
                                     ccl_private uint *r_num_recorded_hits,
                                     ccl_private float *r_throughput)
{
  /* todo:
   * - likely and unlikely for if() statements
   * - test restrict attribute for pointers
   */

  /* traversal stack in CUDA thread-local memory */
  int traversal_stack[BVH_STACK_SIZE];
  traversal_stack[0] = ENTRYPOINT_SENTINEL;

  /* traversal variables in registers */
  int stack_ptr = 0;
  int node_addr = kernel_data.bvh.root;

  /* ray parameters in registers */
  float3 P = ray->P;
  float3 dir = bvh_clamp_direction(ray->D);
  float3 idir = bvh_inverse_direction(dir);
  float tmin = ray->tmin;
  int object = OBJECT_NONE;
  uint num_hits = 0;

  /* Max distance in world space. May be dynamically reduced when max number of
   * recorded hits is exceeded and we no longer need to find hits beyond the max
   * distance found. */
  const float tmax = ray->tmax;
  float tmax_hits = tmax;

  *r_num_recorded_hits = 0;
  *r_throughput = 1.0f;

  /* traversal loop */
  do {
    do {
      /* traverse internal nodes */
      while (node_addr >= 0 && node_addr != ENTRYPOINT_SENTINEL) {
        int node_addr_child1, traverse_mask;
        float dist[2];
        float4 cnodes = kernel_data_fetch(bvh_nodes, node_addr + 0);

        traverse_mask = NODE_INTERSECT(kg,
                                       P,
#if BVH_FEATURE(BVH_HAIR)
                                       dir,
#endif
                                       idir,
                                       tmin,
                                       tmax,
                                       node_addr,
                                       visibility,
                                       dist);

        node_addr = __float_as_int(cnodes.z);
        node_addr_child1 = __float_as_int(cnodes.w);

        if (traverse_mask == 3) {
          /* Both children were intersected, push the farther one. */
          bool is_closest_child1 = (dist[1] < dist[0]);
          if (is_closest_child1) {
            int tmp = node_addr;
            node_addr = node_addr_child1;
            node_addr_child1 = tmp;
          }

          ++stack_ptr;
          kernel_assert(stack_ptr < BVH_STACK_SIZE);
          traversal_stack[stack_ptr] = node_addr_child1;
        }
        else {
          /* One child was intersected. */
          if (traverse_mask == 2) {
            node_addr = node_addr_child1;
          }
          else if (traverse_mask == 0) {
            /* Neither child was intersected. */
            node_addr = traversal_stack[stack_ptr];
            --stack_ptr;
          }
        }
      }

      /* if node is leaf, fetch triangle list */
      if (node_addr < 0) {
        float4 leaf = kernel_data_fetch(bvh_leaf_nodes, (-node_addr - 1));
        int prim_addr = __float_as_int(leaf.x);

        if (prim_addr >= 0) {
          const int prim_addr2 = __float_as_int(leaf.y);
          const uint type = __float_as_int(leaf.w);

          /* pop */
          node_addr = traversal_stack[stack_ptr];
          --stack_ptr;

          /* primitive intersection */
          for (; prim_addr < prim_addr2; prim_addr++) {
            kernel_assert((kernel_data_fetch(prim_type, prim_addr) & PRIMITIVE_ALL) ==
                          (type & PRIMITIVE_ALL));
            bool hit;

            /* todo: specialized intersect functions which don't fill in
             * isect unless needed and check SD_HAS_TRANSPARENT_SHADOW?
             * might give a few % performance improvement */
            Intersection isect ccl_optional_struct_init;

            const int prim_object = (object == OBJECT_NONE) ?
                                        kernel_data_fetch(prim_object, prim_addr) :
                                        object;
            const int prim = kernel_data_fetch(prim_index, prim_addr);
            if (intersection_skip_self_shadow(ray->self, prim_object, prim)) {
              continue;
            }

            switch (type & PRIMITIVE_ALL) {
              case PRIMITIVE_TRIANGLE: {
                hit = triangle_intersect(
                    kg, &isect, P, dir, tmin, tmax, visibility, prim_object, prim, prim_addr);
                break;
              }
#if BVH_FEATURE(BVH_MOTION)
              case PRIMITIVE_MOTION_TRIANGLE: {
                hit = motion_triangle_intersect(kg,
                                                &isect,
                                                P,
                                                dir,
                                                tmin,
                                                tmax,
                                                ray->time,
                                                visibility,
                                                prim_object,
                                                prim,
                                                prim_addr);
                break;
              }
#endif
#if BVH_FEATURE(BVH_HAIR)
              case PRIMITIVE_CURVE_THICK:
              case PRIMITIVE_MOTION_CURVE_THICK:
              case PRIMITIVE_CURVE_RIBBON:
              case PRIMITIVE_MOTION_CURVE_RIBBON: {
                if ((type & PRIMITIVE_MOTION) && kernel_data.bvh.use_bvh_steps) {
                  const float2 prim_time = kernel_data_fetch(prim_time, prim_addr);
                  if (ray->time < prim_time.x || ray->time > prim_time.y) {
                    hit = false;
                    break;
                  }
                }

                const int curve_type = kernel_data_fetch(prim_type, prim_addr);
                hit = curve_intersect(
                    kg, &isect, P, dir, tmin, tmax, prim_object, prim, ray->time, curve_type);

                break;
              }
#endif
#if BVH_FEATURE(BVH_POINTCLOUD)
              case PRIMITIVE_POINT:
              case PRIMITIVE_MOTION_POINT: {
                if ((type & PRIMITIVE_MOTION) && kernel_data.bvh.use_bvh_steps) {
                  const float2 prim_time = kernel_data_fetch(prim_time, prim_addr);
                  if (ray->time < prim_time.x || ray->time > prim_time.y) {
                    hit = false;
                    break;
                  }
                }

                const int point_type = kernel_data_fetch(prim_type, prim_addr);
                hit = point_intersect(
                    kg, &isect, P, dir, tmin, tmax, prim_object, prim, ray->time, point_type);
                break;
              }
#endif /* BVH_FEATURE(BVH_POINTCLOUD) */
              default: {
                hit = false;
                break;
              }
            }

            /* shadow ray early termination */
            if (hit) {
              /* detect if this surface has a shader with transparent shadows */
              /* todo: optimize so primitive visibility flag indicates if
               * the primitive has a transparent shadow shader? */
              const int flags = intersection_get_shader_flags(kg, isect.prim, isect.type);

              if (!(flags & SD_HAS_TRANSPARENT_SHADOW) || num_hits >= max_hits) {
                /* If no transparent shadows, all light is blocked and we can
                 * stop immediately. */
                return true;
              }

              num_hits++;

              bool record_intersection = true;

              /* Always use baked shadow transparency for curves. */
              if (isect.type & PRIMITIVE_CURVE) {
                *r_throughput *= intersection_curve_shadow_transparency(
                    kg, isect.object, isect.prim, isect.type, isect.u);

                if (*r_throughput < CURVE_SHADOW_TRANSPARENCY_CUTOFF) {
                  return true;
                }
                else {
                  record_intersection = false;
                }
              }

              if (record_intersection) {
                /* Test if we need to record this transparent intersection. */
                const uint max_record_hits = min(max_hits, INTEGRATOR_SHADOW_ISECT_SIZE);
                if (*r_num_recorded_hits < max_record_hits || isect.t < tmax_hits) {
                  /* If maximum number of hits was reached, replace the intersection with the
                   * highest distance. We want to find the N closest intersections. */
                  const uint num_recorded_hits = min(*r_num_recorded_hits, max_record_hits);
                  uint isect_index = num_recorded_hits;
                  if (num_recorded_hits + 1 >= max_record_hits) {
                    float max_t = INTEGRATOR_STATE_ARRAY(state, shadow_isect, 0, t);
                    uint max_recorded_hit = 0;

                    for (uint i = 1; i < num_recorded_hits; ++i) {
                      const float isect_t = INTEGRATOR_STATE_ARRAY(state, shadow_isect, i, t);
                      if (isect_t > max_t) {
                        max_recorded_hit = i;
                        max_t = isect_t;
                      }
                    }

                    if (num_recorded_hits >= max_record_hits) {
                      isect_index = max_recorded_hit;
                    }

                    /* Limit the ray distance and stop counting hits beyond this. */
                    tmax_hits = max(isect.t, max_t);
                  }

                  integrator_state_write_shadow_isect(state, &isect, isect_index);
                }

                /* Always increase the number of recorded hits, even beyond the maximum,
                 * so that we can detect this and trace another ray if needed. */
                ++(*r_num_recorded_hits);
              }
            }
          }
        }
        else {
          /* instance push */
          object = kernel_data_fetch(prim_object, -prim_addr - 1);

#if BVH_FEATURE(BVH_MOTION)
          bvh_instance_motion_push(kg, object, ray, &P, &dir, &idir);
#else
          bvh_instance_push(kg, object, ray, &P, &dir, &idir);
#endif

          ++stack_ptr;
          kernel_assert(stack_ptr < BVH_STACK_SIZE);
          traversal_stack[stack_ptr] = ENTRYPOINT_SENTINEL;

          node_addr = kernel_data_fetch(object_node, object);
        }
      }
    } while (node_addr != ENTRYPOINT_SENTINEL);

    if (stack_ptr >= 0) {
      kernel_assert(object != OBJECT_NONE);

      /* Instance pop. */
      bvh_instance_pop(ray, &P, &dir, &idir);

      object = OBJECT_NONE;
      node_addr = traversal_stack[stack_ptr];
      --stack_ptr;
    }
  } while (node_addr != ENTRYPOINT_SENTINEL);

  return false;
}

ccl_device_inline bool BVH_FUNCTION_NAME(KernelGlobals kg,
                                         ccl_private const Ray *ray,
                                         IntegratorShadowState state,
                                         const uint visibility,
                                         const uint max_hits,
                                         ccl_private uint *num_recorded_hits,
                                         ccl_private float *throughput)
{
  return BVH_FUNCTION_FULL_NAME(BVH)(
      kg, ray, state, visibility, max_hits, num_recorded_hits, throughput);
}

#undef BVH_FUNCTION_NAME
#undef BVH_FUNCTION_FEATURES
#undef NODE_INTERSECT