Welcome to mirror list, hosted at ThFree Co, Russian Federation.

util.h « bvh « kernel « cycles « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: a57703a8b8c07fb3de5c94d1a61a394ecaa2b760 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
/* SPDX-License-Identifier: Apache-2.0
 * Copyright 2011-2022 Blender Foundation */

#pragma once

CCL_NAMESPACE_BEGIN

ccl_device_inline bool intersection_ray_valid(ccl_private const Ray *ray)
{
  /* NOTE: Due to some vectorization code  non-finite origin point might
   * cause lots of false-positive intersections which will overflow traversal
   * stack.
   * This code is a quick way to perform early output, to avoid crashes in
   * such cases.
   * From production scenes so far it seems it's enough to test first element
   * only.
   * Scene intersection may also called with empty rays for conditional trace
   * calls that evaluate to false, so filter those out.
   */
  return isfinite_safe(ray->P.x) && isfinite_safe(ray->D.x) && len_squared(ray->D) != 0.0f;
}

/* Offset intersection distance by the smallest possible amount, to skip
 * intersections at this distance. This works in cases where the ray start
 * position is unchanged and only tmin is updated, since for self
 * intersection we'll be comparing against the exact same distances. */
ccl_device_forceinline float intersection_t_offset(const float t)
{
  /* This is a simplified version of `nextafterf(t, FLT_MAX)`, only dealing with
   * non-negative and finite t. */
  kernel_assert(t >= 0.0f && isfinite_safe(t));
  const uint32_t bits = (t == 0.0f) ? 1 : __float_as_uint(t) + 1;
  return __uint_as_float(bits);
}

/* Ray offset to avoid self intersection.
 *
 * This function can be used to compute a modified ray start position for rays
 * leaving from a surface. This is from:
 * "A Fast and Robust Method for Avoiding Self-Intersection"
 * Ray Tracing Gems, chapter 6.
 */
ccl_device_inline float3 ray_offset(const float3 P, const float3 Ng)
{
  const float int_scale = 256.0f;
  const int3 of_i = make_int3(
      (int)(int_scale * Ng.x), (int)(int_scale * Ng.y), (int)(int_scale * Ng.z));

  const float3 p_i = make_float3(
      __int_as_float(__float_as_int(P.x) + ((P.x < 0) ? -of_i.x : of_i.x)),
      __int_as_float(__float_as_int(P.y) + ((P.y < 0) ? -of_i.y : of_i.y)),
      __int_as_float(__float_as_int(P.z) + ((P.z < 0) ? -of_i.z : of_i.z)));
  const float origin = 1.0f / 32.0f;
  const float float_scale = 1.0f / 65536.0f;
  return make_float3(fabsf(P.x) < origin ? P.x + float_scale * Ng.x : p_i.x,
                     fabsf(P.y) < origin ? P.y + float_scale * Ng.y : p_i.y,
                     fabsf(P.z) < origin ? P.z + float_scale * Ng.z : p_i.z);
}

#ifndef __KERNEL_GPU__
ccl_device int intersections_compare(const void *a, const void *b)
{
  const Intersection *isect_a = (const Intersection *)a;
  const Intersection *isect_b = (const Intersection *)b;

  if (isect_a->t < isect_b->t)
    return -1;
  else if (isect_a->t > isect_b->t)
    return 1;
  else
    return 0;
}
#endif

/* For subsurface scattering, only sorting a small amount of intersections
 * so bubble sort is fine for CPU and GPU. */
ccl_device_inline void sort_intersections_and_normals(ccl_private Intersection *hits,
                                                      ccl_private float3 *Ng,
                                                      uint num_hits)
{
  bool swapped;
  do {
    swapped = false;
    for (int j = 0; j < num_hits - 1; ++j) {
      if (hits[j].t > hits[j + 1].t) {
        Intersection tmp_hit = hits[j];
        float3 tmp_Ng = Ng[j];
        hits[j] = hits[j + 1];
        Ng[j] = Ng[j + 1];
        hits[j + 1] = tmp_hit;
        Ng[j + 1] = tmp_Ng;
        swapped = true;
      }
    }
    --num_hits;
  } while (swapped);
}

/* Utility to quickly get flags from an intersection. */

ccl_device_forceinline int intersection_get_shader_flags(KernelGlobals kg,
                                                         const int prim,
                                                         const int type)
{
  int shader = 0;

  if (type & PRIMITIVE_TRIANGLE) {
    shader = kernel_data_fetch(tri_shader, prim);
  }
#ifdef __POINTCLOUD__
  else if (type & PRIMITIVE_POINT) {
    shader = kernel_data_fetch(points_shader, prim);
  }
#endif
#ifdef __HAIR__
  else if (type & PRIMITIVE_CURVE) {
    shader = kernel_data_fetch(curves, prim).shader_id;
  }
#endif

  return kernel_data_fetch(shaders, (shader & SHADER_MASK)).flags;
}

ccl_device_forceinline int intersection_get_shader_from_isect_prim(KernelGlobals kg,
                                                                   const int prim,
                                                                   const int isect_type)
{
  int shader = 0;

  if (isect_type & PRIMITIVE_TRIANGLE) {
    shader = kernel_data_fetch(tri_shader, prim);
  }
#ifdef __POINTCLOUD__
  else if (isect_type & PRIMITIVE_POINT) {
    shader = kernel_data_fetch(points_shader, prim);
  }
#endif
#ifdef __HAIR__
  else if (isect_type & PRIMITIVE_CURVE) {
    shader = kernel_data_fetch(curves, prim).shader_id;
  }
#endif

  return shader & SHADER_MASK;
}

ccl_device_forceinline int intersection_get_shader(
    KernelGlobals kg, ccl_private const Intersection *ccl_restrict isect)
{
  return intersection_get_shader_from_isect_prim(kg, isect->prim, isect->type);
}

ccl_device_forceinline int intersection_get_object_flags(
    KernelGlobals kg, ccl_private const Intersection *ccl_restrict isect)
{
  return kernel_data_fetch(object_flag, isect->object);
}

/* TODO: find a better (faster) solution for this. Maybe store offset per object for
 * attributes needed in intersection? */
ccl_device_inline int intersection_find_attribute(KernelGlobals kg,
                                                  const int object,
                                                  const uint id)
{
  uint attr_offset = kernel_data_fetch(objects, object).attribute_map_offset;
  AttributeMap attr_map = kernel_data_fetch(attributes_map, attr_offset);

  while (attr_map.id != id) {
    if (UNLIKELY(attr_map.id == ATTR_STD_NONE)) {
      if (UNLIKELY(attr_map.element == 0)) {
        return (int)ATTR_STD_NOT_FOUND;
      }
      else {
        /* Chain jump to a different part of the table. */
        attr_offset = attr_map.offset;
      }
    }
    else {
      attr_offset += ATTR_PRIM_TYPES;
    }
    attr_map = kernel_data_fetch(attributes_map, attr_offset);
  }

  /* return result */
  return (attr_map.element == ATTR_ELEMENT_NONE) ? (int)ATTR_STD_NOT_FOUND : (int)attr_map.offset;
}

/* Transparent Shadows */

/* Cut-off value to stop transparent shadow tracing when practically opaque. */
#define CURVE_SHADOW_TRANSPARENCY_CUTOFF 0.001f

ccl_device_inline float intersection_curve_shadow_transparency(KernelGlobals kg,
                                                               const int object,
                                                               const int prim,
                                                               const float u)
{
  /* Find attribute. */
  const int offset = intersection_find_attribute(kg, object, ATTR_STD_SHADOW_TRANSPARENCY);
  if (offset == ATTR_STD_NOT_FOUND) {
    /* If no shadow transparency attribute, assume opaque. */
    return 0.0f;
  }

  /* Interpolate transparency between curve keys. */
  const KernelCurve kcurve = kernel_data_fetch(curves, prim);
  const int k0 = kcurve.first_key + PRIMITIVE_UNPACK_SEGMENT(kcurve.type);
  const int k1 = k0 + 1;

  const float f0 = kernel_data_fetch(attributes_float, offset + k0);
  const float f1 = kernel_data_fetch(attributes_float, offset + k1);

  return (1.0f - u) * f0 + u * f1;
}

ccl_device_inline bool intersection_skip_self(ccl_private const RaySelfPrimitives &self,
                                              const int object,
                                              const int prim)
{
  return (self.prim == prim) && (self.object == object);
}

ccl_device_inline bool intersection_skip_self_shadow(ccl_private const RaySelfPrimitives &self,
                                                     const int object,
                                                     const int prim)
{
  return ((self.prim == prim) && (self.object == object)) ||
         ((self.light_prim == prim) && (self.light_object == object));
}

ccl_device_inline bool intersection_skip_self_local(ccl_private const RaySelfPrimitives &self,
                                                    const int prim)
{
  return (self.prim == prim);
}

CCL_NAMESPACE_END