Welcome to mirror list, hosted at ThFree Co, Russian Federation.

camera.h « camera « kernel « cycles « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: aad68e527ac4f927a40c29048d02e624880b275d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
/* SPDX-License-Identifier: Apache-2.0
 * Copyright 2011-2022 Blender Foundation */

#pragma once

#include "kernel/camera/projection.h"
#include "kernel/sample/mapping.h"
#include "kernel/util/differential.h"
#include "kernel/util/lookup_table.h"

CCL_NAMESPACE_BEGIN

/* Perspective Camera */

ccl_device float2 camera_sample_aperture(ccl_constant KernelCamera *cam, float u, float v)
{
  float blades = cam->blades;
  float2 bokeh;

  if (blades == 0.0f) {
    /* sample disk */
    bokeh = concentric_sample_disk(u, v);
  }
  else {
    /* sample polygon */
    float rotation = cam->bladesrotation;
    bokeh = regular_polygon_sample(blades, rotation, u, v);
  }

  /* anamorphic lens bokeh */
  bokeh.x *= cam->inv_aperture_ratio;

  return bokeh;
}

ccl_device void camera_sample_perspective(KernelGlobals kg,
                                          float raster_x,
                                          float raster_y,
                                          float lens_u,
                                          float lens_v,
                                          ccl_private Ray *ray)
{
  /* create ray form raster position */
  ProjectionTransform rastertocamera = kernel_data.cam.rastertocamera;
  float3 raster = make_float3(raster_x, raster_y, 0.0f);
  float3 Pcamera = transform_perspective(&rastertocamera, raster);

#ifdef __CAMERA_MOTION__
  if (kernel_data.cam.have_perspective_motion) {
    /* TODO(sergey): Currently we interpolate projected coordinate which
     * gives nice looking result and which is simple, but is in fact a bit
     * different comparing to constructing projective matrix from an
     * interpolated field of view.
     */
    if (ray->time < 0.5f) {
      ProjectionTransform rastertocamera_pre = kernel_data.cam.perspective_pre;
      float3 Pcamera_pre = transform_perspective(&rastertocamera_pre, raster);
      Pcamera = interp(Pcamera_pre, Pcamera, ray->time * 2.0f);
    }
    else {
      ProjectionTransform rastertocamera_post = kernel_data.cam.perspective_post;
      float3 Pcamera_post = transform_perspective(&rastertocamera_post, raster);
      Pcamera = interp(Pcamera, Pcamera_post, (ray->time - 0.5f) * 2.0f);
    }
  }
#endif

  float3 P = zero_float3();
  float3 D = Pcamera;

  /* modify ray for depth of field */
  float aperturesize = kernel_data.cam.aperturesize;

  if (aperturesize > 0.0f) {
    /* sample point on aperture */
    float2 lensuv = camera_sample_aperture(&kernel_data.cam, lens_u, lens_v) * aperturesize;

    /* compute point on plane of focus */
    float ft = kernel_data.cam.focaldistance / D.z;
    float3 Pfocus = D * ft;

    /* update ray for effect of lens */
    P = make_float3(lensuv.x, lensuv.y, 0.0f);
    D = normalize(Pfocus - P);
  }

  /* transform ray from camera to world */
  Transform cameratoworld = kernel_data.cam.cameratoworld;

#ifdef __CAMERA_MOTION__
  if (kernel_data.cam.num_motion_steps) {
    transform_motion_array_interpolate(&cameratoworld,
                                       kernel_tex_array(__camera_motion),
                                       kernel_data.cam.num_motion_steps,
                                       ray->time);
  }
#endif

  P = transform_point(&cameratoworld, P);
  D = normalize(transform_direction(&cameratoworld, D));

  bool use_stereo = kernel_data.cam.interocular_offset != 0.0f;
  if (!use_stereo) {
    /* No stereo */
    ray->P = P;
    ray->D = D;

#ifdef __RAY_DIFFERENTIALS__
    float3 Dcenter = transform_direction(&cameratoworld, Pcamera);
    float3 Dcenter_normalized = normalize(Dcenter);

    /* TODO: can this be optimized to give compact differentials directly? */
    ray->dP = differential_zero_compact();
    differential3 dD;
    dD.dx = normalize(Dcenter + float4_to_float3(kernel_data.cam.dx)) - Dcenter_normalized;
    dD.dy = normalize(Dcenter + float4_to_float3(kernel_data.cam.dy)) - Dcenter_normalized;
    ray->dD = differential_make_compact(dD);
#endif
  }
  else {
    /* Spherical stereo */
    spherical_stereo_transform(&kernel_data.cam, &P, &D);
    ray->P = P;
    ray->D = D;

#ifdef __RAY_DIFFERENTIALS__
    /* Ray differentials, computed from scratch using the raster coordinates
     * because we don't want to be affected by depth of field. We compute
     * ray origin and direction for the center and two neighboring pixels
     * and simply take their differences. */
    float3 Pnostereo = transform_point(&cameratoworld, zero_float3());

    float3 Pcenter = Pnostereo;
    float3 Dcenter = Pcamera;
    Dcenter = normalize(transform_direction(&cameratoworld, Dcenter));
    spherical_stereo_transform(&kernel_data.cam, &Pcenter, &Dcenter);

    float3 Px = Pnostereo;
    float3 Dx = transform_perspective(&rastertocamera,
                                      make_float3(raster_x + 1.0f, raster_y, 0.0f));
    Dx = normalize(transform_direction(&cameratoworld, Dx));
    spherical_stereo_transform(&kernel_data.cam, &Px, &Dx);

    differential3 dP, dD;

    dP.dx = Px - Pcenter;
    dD.dx = Dx - Dcenter;

    float3 Py = Pnostereo;
    float3 Dy = transform_perspective(&rastertocamera,
                                      make_float3(raster_x, raster_y + 1.0f, 0.0f));
    Dy = normalize(transform_direction(&cameratoworld, Dy));
    spherical_stereo_transform(&kernel_data.cam, &Py, &Dy);

    dP.dy = Py - Pcenter;
    dD.dy = Dy - Dcenter;
    ray->dD = differential_make_compact(dD);
    ray->dP = differential_make_compact(dP);
#endif
  }

#ifdef __CAMERA_CLIPPING__
  /* clipping */
  float z_inv = 1.0f / normalize(Pcamera).z;
  float nearclip = kernel_data.cam.nearclip * z_inv;
  ray->P += nearclip * ray->D;
  ray->dP += nearclip * ray->dD;
  ray->t = kernel_data.cam.cliplength * z_inv;
#else
  ray->t = FLT_MAX;
#endif
}

/* Orthographic Camera */
ccl_device void camera_sample_orthographic(KernelGlobals kg,
                                           float raster_x,
                                           float raster_y,
                                           float lens_u,
                                           float lens_v,
                                           ccl_private Ray *ray)
{
  /* create ray form raster position */
  ProjectionTransform rastertocamera = kernel_data.cam.rastertocamera;
  float3 Pcamera = transform_perspective(&rastertocamera, make_float3(raster_x, raster_y, 0.0f));

  float3 P;
  float3 D = make_float3(0.0f, 0.0f, 1.0f);

  /* modify ray for depth of field */
  float aperturesize = kernel_data.cam.aperturesize;

  if (aperturesize > 0.0f) {
    /* sample point on aperture */
    float2 lensuv = camera_sample_aperture(&kernel_data.cam, lens_u, lens_v) * aperturesize;

    /* compute point on plane of focus */
    float3 Pfocus = D * kernel_data.cam.focaldistance;

    /* update ray for effect of lens */
    float3 lensuvw = make_float3(lensuv.x, lensuv.y, 0.0f);
    P = Pcamera + lensuvw;
    D = normalize(Pfocus - lensuvw);
  }
  else {
    P = Pcamera;
  }
  /* transform ray from camera to world */
  Transform cameratoworld = kernel_data.cam.cameratoworld;

#ifdef __CAMERA_MOTION__
  if (kernel_data.cam.num_motion_steps) {
    transform_motion_array_interpolate(&cameratoworld,
                                       kernel_tex_array(__camera_motion),
                                       kernel_data.cam.num_motion_steps,
                                       ray->time);
  }
#endif

  ray->P = transform_point(&cameratoworld, P);
  ray->D = normalize(transform_direction(&cameratoworld, D));

#ifdef __RAY_DIFFERENTIALS__
  /* ray differential */
  differential3 dP;
  dP.dx = float4_to_float3(kernel_data.cam.dx);
  dP.dy = float4_to_float3(kernel_data.cam.dx);

  ray->dP = differential_make_compact(dP);
  ray->dD = differential_zero_compact();
#endif

#ifdef __CAMERA_CLIPPING__
  /* clipping */
  ray->t = kernel_data.cam.cliplength;
#else
  ray->t = FLT_MAX;
#endif
}

/* Panorama Camera */

ccl_device_inline void camera_sample_panorama(ccl_constant KernelCamera *cam,
#ifdef __CAMERA_MOTION__
                                              ccl_global const DecomposedTransform *cam_motion,
#endif
                                              float raster_x,
                                              float raster_y,
                                              float lens_u,
                                              float lens_v,
                                              ccl_private Ray *ray)
{
  ProjectionTransform rastertocamera = cam->rastertocamera;
  float3 Pcamera = transform_perspective(&rastertocamera, make_float3(raster_x, raster_y, 0.0f));

  /* create ray form raster position */
  float3 P = zero_float3();
  float3 D = panorama_to_direction(cam, Pcamera.x, Pcamera.y);

  /* indicates ray should not receive any light, outside of the lens */
  if (is_zero(D)) {
    ray->t = 0.0f;
    return;
  }

  /* modify ray for depth of field */
  float aperturesize = cam->aperturesize;

  if (aperturesize > 0.0f) {
    /* sample point on aperture */
    float2 lensuv = camera_sample_aperture(cam, lens_u, lens_v) * aperturesize;

    /* compute point on plane of focus */
    float3 Dfocus = normalize(D);
    float3 Pfocus = Dfocus * cam->focaldistance;

    /* calculate orthonormal coordinates perpendicular to Dfocus */
    float3 U, V;
    U = normalize(make_float3(1.0f, 0.0f, 0.0f) - Dfocus.x * Dfocus);
    V = normalize(cross(Dfocus, U));

    /* update ray for effect of lens */
    P = U * lensuv.x + V * lensuv.y;
    D = normalize(Pfocus - P);
  }

  /* transform ray from camera to world */
  Transform cameratoworld = cam->cameratoworld;

#ifdef __CAMERA_MOTION__
  if (cam->num_motion_steps) {
    transform_motion_array_interpolate(
        &cameratoworld, cam_motion, cam->num_motion_steps, ray->time);
  }
#endif

  /* Stereo transform */
  bool use_stereo = cam->interocular_offset != 0.0f;
  if (use_stereo) {
    spherical_stereo_transform(cam, &P, &D);
  }

  P = transform_point(&cameratoworld, P);
  D = normalize(transform_direction(&cameratoworld, D));

  ray->P = P;
  ray->D = D;

#ifdef __RAY_DIFFERENTIALS__
  /* Ray differentials, computed from scratch using the raster coordinates
   * because we don't want to be affected by depth of field. We compute
   * ray origin and direction for the center and two neighboring pixels
   * and simply take their differences. */
  float3 Pcenter = Pcamera;
  float3 Dcenter = panorama_to_direction(cam, Pcenter.x, Pcenter.y);
  if (use_stereo) {
    spherical_stereo_transform(cam, &Pcenter, &Dcenter);
  }
  Pcenter = transform_point(&cameratoworld, Pcenter);
  Dcenter = normalize(transform_direction(&cameratoworld, Dcenter));

  float3 Px = transform_perspective(&rastertocamera, make_float3(raster_x + 1.0f, raster_y, 0.0f));
  float3 Dx = panorama_to_direction(cam, Px.x, Px.y);
  if (use_stereo) {
    spherical_stereo_transform(cam, &Px, &Dx);
  }
  Px = transform_point(&cameratoworld, Px);
  Dx = normalize(transform_direction(&cameratoworld, Dx));

  differential3 dP, dD;
  dP.dx = Px - Pcenter;
  dD.dx = Dx - Dcenter;

  float3 Py = transform_perspective(&rastertocamera, make_float3(raster_x, raster_y + 1.0f, 0.0f));
  float3 Dy = panorama_to_direction(cam, Py.x, Py.y);
  if (use_stereo) {
    spherical_stereo_transform(cam, &Py, &Dy);
  }
  Py = transform_point(&cameratoworld, Py);
  Dy = normalize(transform_direction(&cameratoworld, Dy));

  dP.dy = Py - Pcenter;
  dD.dy = Dy - Dcenter;
  ray->dD = differential_make_compact(dD);
  ray->dP = differential_make_compact(dP);
#endif

#ifdef __CAMERA_CLIPPING__
  /* clipping */
  float nearclip = cam->nearclip;
  ray->P += nearclip * ray->D;
  ray->dP += nearclip * ray->dD;
  ray->t = cam->cliplength;
#else
  ray->t = FLT_MAX;
#endif
}

/* Common */

ccl_device_inline void camera_sample(KernelGlobals kg,
                                     int x,
                                     int y,
                                     float filter_u,
                                     float filter_v,
                                     float lens_u,
                                     float lens_v,
                                     float time,
                                     ccl_private Ray *ray)
{
  /* pixel filter */
  int filter_table_offset = kernel_data.film.filter_table_offset;
  float raster_x = x + lookup_table_read(kg, filter_u, filter_table_offset, FILTER_TABLE_SIZE);
  float raster_y = y + lookup_table_read(kg, filter_v, filter_table_offset, FILTER_TABLE_SIZE);

#ifdef __CAMERA_MOTION__
  /* motion blur */
  if (kernel_data.cam.shuttertime == -1.0f) {
    ray->time = 0.5f;
  }
  else {
    /* TODO(sergey): Such lookup is unneeded when there's rolling shutter
     * effect in use but rolling shutter duration is set to 0.0.
     */
    const int shutter_table_offset = kernel_data.cam.shutter_table_offset;
    ray->time = lookup_table_read(kg, time, shutter_table_offset, SHUTTER_TABLE_SIZE);
    /* TODO(sergey): Currently single rolling shutter effect type only
     * where scan-lines are acquired from top to bottom and whole scan-line
     * is acquired at once (no delay in acquisition happens between pixels
     * of single scan-line).
     *
     * Might want to support more models in the future.
     */
    if (kernel_data.cam.rolling_shutter_type) {
      /* Time corresponding to a fully rolling shutter only effect:
       * top of the frame is time 0.0, bottom of the frame is time 1.0.
       */
      const float time = 1.0f - (float)y / kernel_data.cam.height;
      const float duration = kernel_data.cam.rolling_shutter_duration;
      if (duration != 0.0f) {
        /* This isn't fully physical correct, but lets us to have simple
         * controls in the interface. The idea here is basically sort of
         * linear interpolation between how much rolling shutter effect
         * exist on the frame and how much of it is a motion blur effect.
         */
        ray->time = (ray->time - 0.5f) * duration;
        ray->time += (time - 0.5f) * (1.0f - duration) + 0.5f;
      }
      else {
        ray->time = time;
      }
    }
  }
#endif

  /* sample */
  if (kernel_data.cam.type == CAMERA_PERSPECTIVE) {
    camera_sample_perspective(kg, raster_x, raster_y, lens_u, lens_v, ray);
  }
  else if (kernel_data.cam.type == CAMERA_ORTHOGRAPHIC) {
    camera_sample_orthographic(kg, raster_x, raster_y, lens_u, lens_v, ray);
  }
  else {
#ifdef __CAMERA_MOTION__
    ccl_global const DecomposedTransform *cam_motion = kernel_tex_array(__camera_motion);
    camera_sample_panorama(&kernel_data.cam, cam_motion, raster_x, raster_y, lens_u, lens_v, ray);
#else
    camera_sample_panorama(&kernel_data.cam, raster_x, raster_y, lens_u, lens_v, ray);
#endif
  }
}

/* Utilities */

ccl_device_inline float3 camera_position(KernelGlobals kg)
{
  Transform cameratoworld = kernel_data.cam.cameratoworld;
  return make_float3(cameratoworld.x.w, cameratoworld.y.w, cameratoworld.z.w);
}

ccl_device_inline float camera_distance(KernelGlobals kg, float3 P)
{
  Transform cameratoworld = kernel_data.cam.cameratoworld;
  float3 camP = make_float3(cameratoworld.x.w, cameratoworld.y.w, cameratoworld.z.w);

  if (kernel_data.cam.type == CAMERA_ORTHOGRAPHIC) {
    float3 camD = make_float3(cameratoworld.x.z, cameratoworld.y.z, cameratoworld.z.z);
    return fabsf(dot((P - camP), camD));
  }
  else {
    return len(P - camP);
  }
}

ccl_device_inline float camera_z_depth(KernelGlobals kg, float3 P)
{
  if (kernel_data.cam.type != CAMERA_PANORAMA) {
    Transform worldtocamera = kernel_data.cam.worldtocamera;
    return transform_point(&worldtocamera, P).z;
  }
  else {
    Transform cameratoworld = kernel_data.cam.cameratoworld;
    float3 camP = make_float3(cameratoworld.x.w, cameratoworld.y.w, cameratoworld.z.w);
    return len(P - camP);
  }
}

ccl_device_inline float3 camera_direction_from_point(KernelGlobals kg, float3 P)
{
  Transform cameratoworld = kernel_data.cam.cameratoworld;

  if (kernel_data.cam.type == CAMERA_ORTHOGRAPHIC) {
    float3 camD = make_float3(cameratoworld.x.z, cameratoworld.y.z, cameratoworld.z.z);
    return -camD;
  }
  else {
    float3 camP = make_float3(cameratoworld.x.w, cameratoworld.y.w, cameratoworld.z.w);
    return normalize(camP - P);
  }
}

ccl_device_inline float3 camera_world_to_ndc(KernelGlobals kg,
                                             ccl_private ShaderData *sd,
                                             float3 P)
{
  if (kernel_data.cam.type != CAMERA_PANORAMA) {
    /* perspective / ortho */
    if (sd->object == PRIM_NONE && kernel_data.cam.type == CAMERA_PERSPECTIVE)
      P += camera_position(kg);

    ProjectionTransform tfm = kernel_data.cam.worldtondc;
    return transform_perspective(&tfm, P);
  }
  else {
    /* panorama */
    Transform tfm = kernel_data.cam.worldtocamera;

    if (sd->object != OBJECT_NONE)
      P = normalize(transform_point(&tfm, P));
    else
      P = normalize(transform_direction(&tfm, P));

    float2 uv = direction_to_panorama(&kernel_data.cam, P);

    return make_float3(uv.x, uv.y, 0.0f);
  }
}

CCL_NAMESPACE_END