Welcome to mirror list, hosted at ThFree Co, Russian Federation.

projection.h « camera « kernel « cycles « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: c9fe3a6c7fb5baef3a74f55bbf7eb011c1f37e39 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
/* SPDX-License-Identifier: BSD-3-Clause
 * Parts adapted from Open Shading Language with this license:
 *
 * Copyright (c) 2009-2010 Sony Pictures Imageworks Inc., et al.
 * All Rights Reserved.
 *
 * Modifications Copyright 2011-2022 Blender Foundation. */

#pragma once

CCL_NAMESPACE_BEGIN

/* Spherical coordinates <-> Cartesian direction. */

ccl_device float2 direction_to_spherical(float3 dir)
{
  float theta = safe_acosf(dir.z);
  float phi = atan2f(dir.x, dir.y);

  return make_float2(theta, phi);
}

ccl_device float3 spherical_to_direction(float theta, float phi)
{
  float sin_theta = sinf(theta);
  return make_float3(sin_theta * cosf(phi), sin_theta * sinf(phi), cosf(theta));
}

/* Equirectangular coordinates <-> Cartesian direction */

ccl_device float2 direction_to_equirectangular_range(float3 dir, float4 range)
{
  if (is_zero(dir))
    return zero_float2();

  float u = (atan2f(dir.y, dir.x) - range.y) / range.x;
  float v = (acosf(dir.z / len(dir)) - range.w) / range.z;

  return make_float2(u, v);
}

ccl_device float3 equirectangular_range_to_direction(float u, float v, float4 range)
{
  float phi = range.x * u + range.y;
  float theta = range.z * v + range.w;
  float sin_theta = sinf(theta);
  return make_float3(sin_theta * cosf(phi), sin_theta * sinf(phi), cosf(theta));
}

ccl_device float2 direction_to_equirectangular(float3 dir)
{
  return direction_to_equirectangular_range(dir, make_float4(-M_2PI_F, M_PI_F, -M_PI_F, M_PI_F));
}

ccl_device float3 equirectangular_to_direction(float u, float v)
{
  return equirectangular_range_to_direction(u, v, make_float4(-M_2PI_F, M_PI_F, -M_PI_F, M_PI_F));
}

/* Fisheye <-> Cartesian direction */

ccl_device float2 direction_to_fisheye(float3 dir, float fov)
{
  float r = atan2f(sqrtf(dir.y * dir.y + dir.z * dir.z), dir.x) / fov;
  float phi = atan2f(dir.z, dir.y);

  float u = r * cosf(phi) + 0.5f;
  float v = r * sinf(phi) + 0.5f;

  return make_float2(u, v);
}

ccl_device float3 fisheye_to_direction(float u, float v, float fov)
{
  u = (u - 0.5f) * 2.0f;
  v = (v - 0.5f) * 2.0f;

  float r = sqrtf(u * u + v * v);

  if (r > 1.0f)
    return zero_float3();

  float phi = safe_acosf((r != 0.0f) ? u / r : 0.0f);
  float theta = r * fov * 0.5f;

  if (v < 0.0f)
    phi = -phi;

  return make_float3(cosf(theta), -cosf(phi) * sinf(theta), sinf(phi) * sinf(theta));
}

ccl_device float2 direction_to_fisheye_equisolid(float3 dir, float lens, float width, float height)
{
  float theta = safe_acosf(dir.x);
  float r = 2.0f * lens * sinf(theta * 0.5f);
  float phi = atan2f(dir.z, dir.y);

  float u = r * cosf(phi) / width + 0.5f;
  float v = r * sinf(phi) / height + 0.5f;

  return make_float2(u, v);
}

ccl_device_inline float3
fisheye_equisolid_to_direction(float u, float v, float lens, float fov, float width, float height)
{
  u = (u - 0.5f) * width;
  v = (v - 0.5f) * height;

  float rmax = 2.0f * lens * sinf(fov * 0.25f);
  float r = sqrtf(u * u + v * v);

  if (r > rmax)
    return zero_float3();

  float phi = safe_acosf((r != 0.0f) ? u / r : 0.0f);
  float theta = 2.0f * asinf(r / (2.0f * lens));

  if (v < 0.0f)
    phi = -phi;

  return make_float3(cosf(theta), -cosf(phi) * sinf(theta), sinf(phi) * sinf(theta));
}

ccl_device_inline float3 fisheye_lens_polynomial_to_direction(
    float u, float v, float coeff0, float4 coeffs, float fov, float width, float height)
{
  u = (u - 0.5f) * width;
  v = (v - 0.5f) * height;

  float r = sqrtf(u * u + v * v);
  float r2 = r * r;
  float4 rr = make_float4(r, r2, r2 * r, r2 * r2);
  float theta = -(coeff0 + dot(coeffs, rr));

  if (fabsf(theta) > 0.5f * fov)
    return zero_float3();

  float phi = safe_acosf((r != 0.0f) ? u / r : 0.0f);

  if (v < 0.0f)
    phi = -phi;

  return make_float3(cosf(theta), -cosf(phi) * sinf(theta), sinf(phi) * sinf(theta));
}

ccl_device float2 direction_to_fisheye_lens_polynomial(
    float3 dir, float coeff0, float4 coeffs, float width, float height)
{
  float theta = -safe_acosf(dir.x);

  float r = (theta - coeff0) / coeffs.x;

  for (int i = 0; i < 20; i++) {
    float r2 = r * r;
    float4 rr = make_float4(r, r2, r2 * r, r2 * r2);
    r = (theta - (coeff0 + dot(coeffs, rr))) / coeffs.x;
  }

  float phi = atan2f(dir.z, dir.y);

  float u = r * cosf(phi) / width + 0.5f;
  float v = r * sinf(phi) / height + 0.5f;

  return make_float2(u, v);
}

/* Mirror Ball <-> Cartesion direction */

ccl_device float3 mirrorball_to_direction(float u, float v)
{
  /* point on sphere */
  float3 dir;

  dir.x = 2.0f * u - 1.0f;
  dir.z = 2.0f * v - 1.0f;

  if (dir.x * dir.x + dir.z * dir.z > 1.0f)
    return zero_float3();

  dir.y = -sqrtf(max(1.0f - dir.x * dir.x - dir.z * dir.z, 0.0f));

  /* reflection */
  float3 I = make_float3(0.0f, -1.0f, 0.0f);

  return 2.0f * dot(dir, I) * dir - I;
}

ccl_device float2 direction_to_mirrorball(float3 dir)
{
  /* inverse of mirrorball_to_direction */
  dir.y -= 1.0f;

  float div = 2.0f * sqrtf(max(-0.5f * dir.y, 0.0f));
  if (div > 0.0f)
    dir /= div;

  float u = 0.5f * (dir.x + 1.0f);
  float v = 0.5f * (dir.z + 1.0f);

  return make_float2(u, v);
}

ccl_device_inline float3 panorama_to_direction(ccl_constant KernelCamera *cam, float u, float v)
{
  switch (cam->panorama_type) {
    case PANORAMA_EQUIRECTANGULAR:
      return equirectangular_range_to_direction(u, v, cam->equirectangular_range);
    case PANORAMA_MIRRORBALL:
      return mirrorball_to_direction(u, v);
    case PANORAMA_FISHEYE_EQUIDISTANT:
      return fisheye_to_direction(u, v, cam->fisheye_fov);
    case PANORAMA_FISHEYE_LENS_POLYNOMIAL:
      return fisheye_lens_polynomial_to_direction(u,
                                                  v,
                                                  cam->fisheye_lens_polynomial_bias,
                                                  cam->fisheye_lens_polynomial_coefficients,
                                                  cam->fisheye_fov,
                                                  cam->sensorwidth,
                                                  cam->sensorheight);
    case PANORAMA_FISHEYE_EQUISOLID:
    default:
      return fisheye_equisolid_to_direction(
          u, v, cam->fisheye_lens, cam->fisheye_fov, cam->sensorwidth, cam->sensorheight);
  }
}

ccl_device_inline float2 direction_to_panorama(ccl_constant KernelCamera *cam, float3 dir)
{
  switch (cam->panorama_type) {
    case PANORAMA_EQUIRECTANGULAR:
      return direction_to_equirectangular_range(dir, cam->equirectangular_range);
    case PANORAMA_MIRRORBALL:
      return direction_to_mirrorball(dir);
    case PANORAMA_FISHEYE_EQUIDISTANT:
      return direction_to_fisheye(dir, cam->fisheye_fov);
    case PANORAMA_FISHEYE_LENS_POLYNOMIAL:
      return direction_to_fisheye_lens_polynomial(dir,
                                                  cam->fisheye_lens_polynomial_bias,
                                                  cam->fisheye_lens_polynomial_coefficients,
                                                  cam->sensorwidth,
                                                  cam->sensorheight);
    case PANORAMA_FISHEYE_EQUISOLID:
    default:
      return direction_to_fisheye_equisolid(
          dir, cam->fisheye_lens, cam->sensorwidth, cam->sensorheight);
  }
}

ccl_device_inline void spherical_stereo_transform(ccl_constant KernelCamera *cam,
                                                  ccl_private float3 *P,
                                                  ccl_private float3 *D)
{
  float interocular_offset = cam->interocular_offset;

  /* Interocular offset of zero means either non stereo, or stereo without
   * spherical stereo. */
  kernel_assert(interocular_offset != 0.0f);

  if (cam->pole_merge_angle_to > 0.0f) {
    const float pole_merge_angle_from = cam->pole_merge_angle_from,
                pole_merge_angle_to = cam->pole_merge_angle_to;
    float altitude = fabsf(safe_asinf((*D).z));
    if (altitude > pole_merge_angle_to) {
      interocular_offset = 0.0f;
    }
    else if (altitude > pole_merge_angle_from) {
      float fac = (altitude - pole_merge_angle_from) /
                  (pole_merge_angle_to - pole_merge_angle_from);
      float fade = cosf(fac * M_PI_2_F);
      interocular_offset *= fade;
    }
  }

  float3 up = make_float3(0.0f, 0.0f, 1.0f);
  float3 side = normalize(cross(*D, up));
  float3 stereo_offset = side * interocular_offset;

  *P += stereo_offset;

  /* Convergence distance is FLT_MAX in the case of parallel convergence mode,
   * no need to modify direction in this case either. */
  const float convergence_distance = cam->convergence_distance;

  if (convergence_distance != FLT_MAX) {
    float3 screen_offset = convergence_distance * (*D);
    *D = normalize(screen_offset - stereo_offset);
  }
}

CCL_NAMESPACE_END